- 电路承诺:证明者和验证者将程序编译为大型二进制电路。证明者在一个 Taproot 地址中承诺该电路,该地址下的每个叶子脚本,对应该电路中的每个逻辑门。核心是基于 bit commitment 来实现 logic gate commitment ,从实现电路承诺。
- 挑战和响应:证明者和验证者预签一系列交易来实现挑战-响应游戏。理想情况下,这种互动是在链下进行的,当证明者不配合时,也可在链上执行。
- 模棱两可惩罚:如果证明者提出任何不正确的声明,则验证者挑战成功后可拿走证明者存款,挫败证明者的作恶行为。
- 功能: Scriptless Scripts 可增加智能合约的范围和复杂性。比特币脚本能力受限于网络中已启用的 OP _ CODES 数量,而 Scriptless Scripts 将智能合约的规范和执行从链上转移到仅设计合约参与方的讨论,无需等待比特币网络的分叉来启用新的操作码。
- 隐私:将智能合约的规范和执行从链上转移到链下,可增加隐私。在链上,合约的很多细节都会共享到整个网络,这些详细信息包括参与者的数量和地址以及转账金额等。通过将智能合约移至链下,网络只知道参与者同意其合约条款已得到满足且相关交易有效。
- 效率: Scriptless Scripts 最大限度地降低链上验证和存储的数据量。通过将智能合约移至链下,全节点的管理费用会减少,用户的交易费用也会降低。
- 女巫攻击:即使攻击者伪造多个身份参与争议挑战,单个诚实参与方仍能够赢得争议。如果诚实参与方捍卫正确结果的成本,与对攻击者的数量呈线性关系时,则当涉及大量攻击者时,诚实参与方为赢得争议所需付出的成本将变得不切实际,且容易受到女巫攻击。论文 Permissionless Refereed Tournaments 中,提出一种改变游戏规则的争议解决算法,单个诚实参与方赢得争议的成本随着对手的数量呈对数增长,而不是线性增长。
- 延迟攻击:某个或一群恶意方,遵循某种策略来阻止或延迟正确结果(如将资产提取到L1)在L1上的确认,并迫使诚实的prover花费L1手续费。可要求挑战者需提前质押来缓解该问题。如果挑战者发起延迟攻击,则没收其质押。但是,如果攻击者愿意在一定限度内牺牲质押来追求延迟攻击,则应该有应对策略来降低延迟攻击的影响。论文 BoLD: Bounded Liquidity Delay in a Rollup Challenge Protocol提出的算法,使得无论攻击者愿意失去多少质押,最坏情况下的攻击只能导致一定上限的延迟。