- 去中心化算力网络:面临市场需求挑战,特别强调去中心化的终极目的是降低成本。Web3的社区属性和token带来了不可忽视的价值,但对于算力赛道本身来说还是一种附加值,而非颠覆性的改变,重点在于找到与用户需求结合的方式,而不是盲目将去中心化算力网络作为一种对于中心化算力不足的补充。
- AI市场:讨论了一个全链路金融化的AI市场的构想,社区和代币带来的价值和至关重要。这样的市场不仅关注底层算力和数据,还包括模型本身和相关应用。模型金融化是AI市场的核心要素,一方面吸引用户直接参与到AI模型的价值创造过程,另一方面给底层的算力和数据创造需求。
- Onchain AI,ZKML面临需求和供给的双重挑战,而OPML则提供了一种成本和效率更为平衡的方案。尽管OPML在技术上是一个创新,但它未必能解决链上AI面临的根本性挑战,即没有需求。
- 应用层,大部分web3的AI的应用项目都过于naive,AI应用更合理的点在于增强用户体验和提高开发效率,或是作为AI市场中的重要一环。



- token的引入,支付给节点算力提供者的从现金变为协议的原生代币,这从根本上降低了运营成本;
- 在准入上的permissionless以及web3强大的社区效应直接促成了一种市场驱动的成本优化,更多个人用户和小型企业可以利用现有的硬件资源加入网络,算力供应增加,市场上算力的供应价格下降。在自治和社区管理模式下。
- 协议所创造的开放的算力市场会促进算力提供者的价格博弈,从而进一步降低成本。


- 模型可以被当作为一种商品,将AI模型视为可投资的资产是可能是Web3和去中心化市场的一个有意思的创新。这种市场允许用户直接参与到AI模型的价值创造过程中,并从中受益。这种机制也鼓励了对更高质量模型的追求和社区的贡献,因为用户的收益直接与模型的性能和应用效果相关联;
- 用户可以通过对模型进行质押来投资,引入收益分成的机制一方面激励用户选择和支持有潜力的模型,为模型开发者创造更优秀的模型提供了经济激励。另一方面,对于质押者来说最直观的评判模型的标准(特别是对于图像生成类的模型)就是多次进行实测,那么这就为平台的去中心化算力提供了需求,这可能也是之前提到的“谁会想用更低效更不稳定的算力?”的出路之一。
- 如果一个基于神经网络的交易机器人每个周期都给用户带来百倍的收益,谁还会去质疑算法是否中心化或者是否可验证?
- 同样的,如果这个trading bot开始给用户亏钱了,那项目方更应该思考的是如何提升模型的能力而不是把精力和资本花在让模型可验证上。这就是ZKML需求中的矛盾所在,换句话说模型的可验证在很多场景下并不从根本上解决人们对AI的质疑,就有点南辕北辙的意思。
- ZK电路不支持浮点数;
- 大规模的神经网络难以转换。
- 最新的ZKML库支持一些简单的神经网络ZK化,据称能将基础的线性回归模型上链。但现存的demo很少。
- 理论上最大能支持~100M的参数,但仅存于理论。
- 构建一个用于链下执行和链上验证的虚拟机,确保离线VM和链上智能合约中实现的VM之间的等效性。
- 为了确保AI模型在VM中的推理效率,实现一个专门设计的轻量级DNN库(不依赖于像Tensorflow或PyTorch这样的流行机器学习框架),同时团队也提供了一个可以将Tensorflow和PyTorch模型转换为这个轻量级库的脚本。
- 通过交叉编译将AI模型推理代码编译成VM程序指令。
- VM image通过Merkle tree来管理。只有代表VM状态的Merkle root会被上传到链上智能合约。
- 只有在final phase中,计算在VM进行。
- 在其他阶段,状态转换的计算发生在native的环境中,这样就利用了比如CPU、GPU、TPU的能力,并支持并行处理。这样的做法减少了对VM的依赖,显著提高了执行性能,达到与原生环境相当的水平。


- 借助AI的能力提升用户体验,提升开发效率:这种情况下AI并不会是核心亮点,更多时候是作为一种幕后工作者默默付出,甚至对用户无感;举个例子,web3游戏HIM的团队对于游戏内容、AI、crypto的结合想很聪明,抓住了契合度高,最能产生价值的点,就是一方面利用AI作为生产价值工具,提升开效率和质量,另一方面通过AI的推理能力提升用户的游戏体验,AI和crypto确实带来了非常重要的价值,但根本上还是利用了将技术工具化的手段,项目真正的优势和核心仍然是团队对游戏开发的能力
- 和AI marketplace结合,成为整个生态中面向用户的重要一环。