
- AI 作为游戏中的参与者(最高的可行性):在 AI 参与的机制中,激励的最终来源来自于人类输入的协议。
- AI 作为游戏界面(潜力很大,但存在风险):AI 帮助用户理解周围的加密世界,并确保他们的行为(例如签名的消息和交易)与其意图相符,以避免被欺骗或受骗。
- AI 作为游戏规则(需要非常谨慎):区块链、DAO 和类似机制直接调用 AI。例如,「AI 法官」。
- AI 作为游戏目标(长期而有趣): 设计区块链、DAO 和类似机制的目标是构建和维护一个可以用于其他目的的 AI,使用加密技术的部分要么是为了更好地激励训练,要么是为了防止 AI 泄露私人数据或被滥用。

- 根据[使用条款],此社交媒体帖子是否可以接受?
- 股票 X 的价格会发生什么变化(例如,参见 Numerai)
- 目前给我发消息的这个账户真的是埃隆·马斯克吗?
- 在在线任务市场上提交的这项工作可以接受吗?
- https://examplefinance.network 上的 DApp 是骗局吗?
- 0x1b54....98c3 是「Casinu In」ERC20 代币地址吗?


- 如果一个在机制中起关键作用的 AI 模型是封闭的,你就无法验证它的内部运作,所以它并不比中心化应用更好。
- 如果 AI 模型是开放的,那么攻击者可以在本地下载并模拟它,并设计经过高度优化的攻击来欺骗模型,然后他们可以在实时网络上重放该模型。

- 密码学开销:在 SNARK(或 MPC 等)中执行某项任务比明文执行效率低得多。考虑到 AI 本身已经具有很高的计算需求,是否在密码学黑匣子中执行 AI 计算在计算上是否可行?
- 黑匣子对抗性机器学习攻击:即使不了解模型的内部工作原理,也有方法对 AI 模型进行攻击优化。如果隐藏得过于严密,你可能会使选择训练数据的人更容易通过中毒攻击来损害模型的完整性。

许多机器学习模型容易受到对抗性示例的影响:专门设计的输入会导致机器学习模型产生不正确的输出。影响一个模型的对抗性示例通常会影响另一个模型,即使这两个模型具有不同的架构或在不同的训练集上进行训练,只要两个模型都经过训练以执行相同的任务即可。因此,攻击者可以训练自己的替代模型,针对替代模型制作对抗性示例,并将其转移到受害者模型,而有关受害者的信息很少。潜在地,即使你对要攻击的模型的访问非常有限或没有访问权限,你甚至可以仅仅通过训练数据来创建攻击。截至 2023 年,这类攻击仍然是一个重大问题。 为了有效遏制此类黑盒攻击,我们需要做两件事:
- 真正限制谁或什么可以查询模型以及查询的数量。具有无限制 API 访问权限的黑盒是不安全的; 具有非常受限的 API 访问权限的黑盒可能是安全的。
- 隐藏训练数据的同时,确保训练数据创建过程的不被损坏是一个重要目标。


- 对于这种完全黑盒架构来说,加密开销仍然可能太高,无法与传统的封闭式「trust me」方法竞争。
- 事实可能是,没有一种好的方法可以使训练数据提交过程去中心化并防止中毒攻击。
- 由于参与者串通,多方计算设备可能会破坏其安全或隐私保证:毕竟,这种情况在跨链桥上一再发生过。