以太坊源码分析:fetcher模块和区块传播
刘艳琴
发表于 2022-12-21 01:53:48
230
0
0
当前代码是以太坊Release 1.8,如果版本不同,代码上可能存在差异。
总体过程和传播策略
本节从宏观角度介绍,节点产生区块后,为了传播给远端节点做了啥,远端节点收到区块后又做了什么,每个节点都连接了很多Peer,它传播的策略是什么样的?" F0 p. `, Z5 a; R8 Z4 L. y% m2 m7 h
总体流程和策略可以总结为,传播给远端Peer节点,Peer验证区块无误后,加入到本地区块链,继续传播新区块信息。具体过程如下。7 x4 `2 h5 q! @3 J+ b+ c
先看总体过程。产生区块后,miner模块会发布一个事件NewMinedBlockEvent,订阅事件的协程收到事件后,就会把新区块的消息,广播给它所有的peer,peer收到消息后,会交给自己的fetcher模块处理,fetcher进行基本的验证后,区块没问题,发现这个区块就是本地链需要的下一个区块,则交给blockChain进一步进行完整的验证,这个过程会执行区块所有的交易,无误后把区块加入到本地链,写入数据库,这个过程就是下面的流程图,图1。* h# D# D3 Q0 H2 n) }
. t* |6 Q4 [% R
总体流程图,能看到有个分叉,是因为节点传播新区块是有策略的。它的传播策略为:
假如节点连接了N个Peer,它只向Peer列表的sqrt(N)个Peer广播完整的区块消息。向所有的Peer广播只包含区块Hash的消息。6 @3 H# W$ u( M5 J
策略图的效果如图2,红色节点将区块传播给黄色节点:
收到区块Hash的节点,需要从发送给它消息的Peer那里获取对应的完整区块,获取区块后就会按照图1的流程,加入到fetcher队列,最终插入本地区块链后,将区块的Hash值广播给和它相连,但还不知道这个区块的Peer。非产生区块节点的策略图,如图3,黄色节点将区块Hash传播给青色节点:
0 D8 C, I1 N9 o _3 Y; T# v
至此,可以看出以太坊采用以石击水的方式,像水纹一样,层层扩散新产生的区块。
Fetcher模块是干啥的
fetcher模块的功能,就是收集其他Peer通知它的区块信息:1)完整的区块2)区块Hash消息。根据通知的消息,获取完整的区块,然后传递给eth模块把区块插入区块链。! c9 Q. ? \$ J/ U- }# c. S. v- i& O3 j5 G
如果是完整区块,就可以传递给eth插入区块,如果只有区块Hash,则需要从其他的Peer获取此完整的区块,然后再传递给eth插入区块* y- b6 O' R! c7 I
源码解读# n! t" I: p9 j+ O1 q
本节介绍区块传播和处理的细节东西,方式仍然是先用图解释流程,再是代码流程。0 Q/ i# Z7 i7 c6 @; x
产块节点的传播新区块5 H4 p) [! n, B5 F$ S; H
节点产生区块后,广播的流程可以表示为图4:
发布事件事件处理函数选择要广播完整的Peer,然后将区块加入到它们的队列事件处理函数把区块Hash添加到所有Peer的另外一个通知队列每个Peer的广播处理函数,会遍历它的待广播区块队列和通知队列,把数据封装成消息,调用P2P接口发送出去: z' R2 x# U( f! [3 Z- e$ H/ U8 P
3 D6 m& E4 |. q2 i' l$ z0 b* ]
再看下代码上的细节。4 C! t K! o* u
worker.wait()函数发布事件NewMinedBlockEvent。ProtocolManager.minedBroadcastLoop()是事件处理函数。它调用了2次pm.BroadcastBlock()。3 \ U, M6 Q$ ^$ s( o
# N) e' }/ f0 C: [! Q2 m1 p* C' L
// Mined broadcast loop& ?) g) t+ S' |/ ~: K2 y- j
func (pm *ProtocolManager) minedBroadcastLoop() {
// automatically stops if unsubscribe
for obj := range pm.minedBlockSub.Chan() {
switch ev := obj.Data.(type) {9 q+ q; Z$ ?% s3 Z4 ]! W
case core.NewMinedBlockEvent:
pm.BroadcastBlock(ev.Block, true) // First propagate block to peers H. N" {" v) A. F# m
pm.BroadcastBlock(ev.Block, false) // Only then announce to the rest- y% v6 ~* M% }
}* m1 h( `' v2 {, F
}6 V8 M) G0 x1 c6 A; x/ F; U
}
pm.BroadcastBlock()的入参propagate为真时,向部分Peer广播完整的区块,调用peer.AsyncSendNewBlock(),否则向所有Peer广播区块头,调用peer.AsyncSendNewBlockHash(),这2个函数就是把数据放入队列,此处不再放代码。7 Y7 f% c. ~+ S, O
// BroadcastBlock will either propagate a block to a subset of it's peers, or
// will only announce it's availability (depending what's requested).0 D- W& Q! }, @
func (pm *ProtocolManager) BroadcastBlock(block *types.Block, propagate bool) {
hash := block.Hash()9 b9 b, b2 A8 h7 u8 A% l& q' i
peers := pm.peers.PeersWithoutBlock(hash)# Z, S& [. m( l c# b8 N: l
// If propagation is requested, send to a subset of the peer; \" g V* ^: x2 }+ T& t
// 这种情况,要把区块广播给部分peer8 w. g- M& u) P$ M% G3 p! F
if propagate {
// Calculate the TD of the block (it's not imported yet, so block.Td is not valid)6 w* [1 x2 F# {# d2 z
// 计算新的总难度
var td *big.Int
if parent := pm.blockchain.GetBlock(block.ParentHash(), block.NumberU64()-1); parent != nil {. W, E6 n' S7 V) ?
td = new(big.Int).Add(block.Difficulty(), pm.blockchain.GetTd(block.ParentHash(), block.NumberU64()-1))
} else {
log.Error("Propagating dangling block", "number", block.Number(), "hash", hash)
return
}
// Send the block to a subset of our peers) Q5 }( {1 M7 {3 q: T
// 广播区块给部分peer! L$ v# P7 N- q
transfer := peers[:int(math.Sqrt(float64(len(peers))))]8 g* f0 ^. Z" I* O
for _, peer := range transfer {
peer.AsyncSendNewBlock(block, td)! N$ ~; j8 f4 o9 n' L; u4 t$ u
}
log.Trace("Propagated block", "hash", hash, "recipients", len(transfer), "duration", common.PrettyDuration(time.Since(block.ReceivedAt)))7 F% T; B/ g/ ?' t6 F, l
return
}/ T+ r* t7 o) E' Q
// Otherwise if the block is indeed in out own chain, announce it
// 把区块hash值广播给所有peer
if pm.blockchain.HasBlock(hash, block.NumberU64()) {7 T# `) M2 M9 s' h1 |" q
for _, peer := range peers {' W5 e, Y1 s7 G% z' `8 F5 J- X5 n" m, o
peer.AsyncSendNewBlockHash(block)
}9 R' {4 s2 x5 v6 H0 J
log.Trace("Announced block", "hash", hash, "recipients", len(peers), "duration", common.PrettyDuration(time.Since(block.ReceivedAt)))
}9 {, s! O; V, p+ u# z; s/ P
}
peer.broadcase()是每个Peer连接的广播函数,它只广播3种消息:交易、完整的区块、区块的Hash,这样表明了节点只会主动广播这3中类型的数据,剩余的数据同步,都是通过请求-响应的方式。
// broadcast is a write loop that multiplexes block propagations, announcements
// and transaction broadcasts into the remote peer. The goal is to have an async
// writer that does not lock up node internals.; k* C* q; x( P5 Y" x2 n
func (p *peer) broadcast() {
for {! _" M3 u7 |* z3 v- j
select {4 U# _( p! g9 g' h8 ]0 ~3 c! b+ q
// 广播交易0 n0 n- P y$ ^' N0 k e3 D8 k$ N p
case txs :=
Peer节点处理新区块
本节介绍远端节点收到2种区块同步消息的处理,其中NewBlockMsg的处理流程比较清晰,也简洁。NewBlockHashesMsg消息的处理就绕了2绕,从总体流程图1上能看出来,它需要先从给他发送消息Peer那里获取到完整的区块,剩下的流程和NewBlockMsg又一致了。
这部分涉及的模块多,画出来有种眼花缭乱的感觉,但只要抓住上面的主线,代码看起来还是很清晰的。通过图5先看下整体流程。
消息处理的起点是ProtocolManager.handleMsg,NewBlockMsg的处理流程是蓝色标记的区域,红色区域是单独的协程,是fetcher处理队列中区块的流程,如果从队列中取出的区块是当前链需要的,校验后,调用blockchian.InsertChain()把区块插入到区块链,最后写入数据库,这是黄色部分。最后,绿色部分是NewBlockHashesMsg的处理流程,代码流程上是比较复杂的,为了能通过图描述整体流程,我把它简化掉了。
$ j0 D) J+ ?2 \( f' u) D
仔细看看这幅图,掌握整体的流程后,接下来看每个步骤的细节。! S6 g6 h8 ^8 W" j- `
NewBlockMsg的处理
本节介绍节点收到完整区块的处理,流程如下:
首先进行RLP编解码,然后标记发送消息的Peer已经知道这个区块,这样本节点最后广播这个区块的Hash时,不会再发送给该Peer。
将区块存入到fetcher的队列,调用fetcher.Enqueue。0 W! {, _5 s1 P
更新Peer的Head位置,然后判断本地链是否落后于Peer的链,如果是,则通过Peer更新本地链。1 [( k9 i* K8 J& w3 O& c# N0 v
只看handle.Msg()的NewBlockMsg相关的部分。
case msg.Code == NewBlockMsg:- K1 T, v% {, x& y8 C6 G
// Retrieve and decode the propagated block; a5 E' h& G. S6 X
// 收到新区块,解码,赋值接收数据
var request newBlockData
if err := msg.Decode(&request); err != nil { U) K# ~3 h( y' U
return errResp(ErrDecode, "%v: %v", msg, err)
}5 u( P: {6 ?8 v
request.Block.ReceivedAt = msg.ReceivedAt
request.Block.ReceivedFrom = p
// Mark the peer as owning the block and schedule it for import
// 标记peer知道这个区块
p.MarkBlock(request.Block.Hash())
// 为啥要如队列?已经得到完整的区块了
// 答:存入fetcher的优先级队列,fetcher会从队列中选取当前高度需要的块, j: w3 X4 Y A0 e* S
pm.fetcher.Enqueue(p.id, request.Block)
// Assuming the block is importable by the peer, but possibly not yet done so,) k0 I r% Z. F( I( A9 F' Y
// calculate the head hash and TD that the peer truly must have.$ I0 `: R% T% s& X _. S
// 截止到parent区块的头和难度1 F# Y% I7 e' [ c
var (
trueHead = request.Block.ParentHash()
trueTD = new(big.Int).Sub(request.TD, request.Block.Difficulty())
)
// Update the peers total difficulty if better than the previous6 P( `3 G/ S$ G5 m; B$ ~+ F
// 如果收到的块的难度大于peer之前的,以及自己本地的,就去和这个peer同步
// 问题:就只用了一下块里的hash指,为啥不直接使用这个块呢,如果这个块不能用,干嘛不少发送些数据,减少网络负载呢。- K$ O) z' a$ \; d+ i
// 答案:实际上,这个块加入到了优先级队列中,当fetcher的loop检查到当前下一个区块的高度,正是队列中有的,则不再向peer请求5 R* P4 E3 f# F5 l/ }5 ?6 q/ I
// 该区块,而是直接使用该区块,检查无误后交给block chain执行insertChain
if _, td := p.Head(); trueTD.Cmp(td) > 0 {
p.SetHead(trueHead, trueTD)
// Schedule a sync if above ours. Note, this will not fire a sync for a gap of5 F$ r% m6 t) ]. L1 o
// a singe block (as the true TD is below the propagated block), however this# T+ u0 G, _9 ]
// scenario should easily be covered by the fetcher.
currentBlock := pm.blockchain.CurrentBlock()
if trueTD.Cmp(pm.blockchain.GetTd(currentBlock.Hash(), currentBlock.NumberU64())) > 0 {+ }1 T, l: g; w2 K5 _' K6 `$ _+ I
go pm.synchronise(p)
}
}' E4 r2 t& j2 `- F g& Z
//------------------------ 以上 handleMsg. |; q3 |: U0 K- \
// Enqueue tries to fill gaps the the fetcher's future import queue.
// 发给inject通道,当前协程在handleMsg,通过通道发送给fetcher的协程处理, @" r3 X( W5 S" @
func (f *Fetcher) Enqueue(peer string, block *types.Block) error {$ {) E1 Y! h+ A' D5 A. S/ x3 j2 `
op := &inject{: h2 h" y3 K& {% f) f. N3 J
origin: peer,
block: block,
}6 v6 P$ z! e: A& O2 Q; f
select {7 u8 w! f! B# t/ o. L$ ^
case f.inject blockLimit {
log.Debug("Discarded propagated block, exceeded allowance", "peer", peer, "number", block.Number(), "hash", hash, "limit", blockLimit)6 K! S; w5 X2 D3 g
propBroadcastDOSMeter.Mark(1)& ]) F0 g7 Y& ~3 f& |$ ~, j3 p c
f.forgetHash(hash): {1 F8 t, S* l9 Y
return
}# N% p" V* N5 B( ]" ~
// Discard any past or too distant blocks
// 高度检查:未来太远的块丢弃
if dist := int64(block.NumberU64()) - int64(f.chainHeight()); dist maxQueueDist {" q1 i' t) L6 B5 d s$ G
log.Debug("Discarded propagated block, too far away", "peer", peer, "number", block.Number(), "hash", hash, "distance", dist)
propBroadcastDropMeter.Mark(1)
f.forgetHash(hash)
return
}
// Schedule the block for future importing
// 块先加入优先级队列,加入链之前,还有很多要做5 S& i3 ]3 s* e8 w
if _, ok := f.queued[hash]; !ok {
op := &inject{0 j& ~% T" t7 P5 c
origin: peer,4 [/ {7 [5 E6 e2 l5 K/ o
block: block,7 z+ c+ E- y* k+ g9 ~' @# x
}
f.queues[peer] = count
f.queued[hash] = op
f.queue.Push(op, -float32(block.NumberU64()))! v0 G8 m! c+ @" G# ?
if f.queueChangeHook != nil {
f.queueChangeHook(op.block.Hash(), true)* @" z9 l4 H( | A/ Q( F5 o' z
}
log.Debug("Queued propagated block", "peer", peer, "number", block.Number(), "hash", hash, "queued", f.queue.Size())
}' i8 _$ V. e: I
}
fetcher队列处理
本节我们看看,区块加入队列后,fetcher如何处理区块,为何不直接校验区块,插入到本地链?. H8 s; a: l6 n7 y" y& T
由于以太坊又Uncle的机制,节点可能收到老一点的一些区块。另外,节点可能由于网络原因,落后了几个区块,所以可能收到“未来”的一些区块,这些区块都不能直接插入到本地链。7 s9 Y4 e4 u9 w5 i4 R
区块入的队列是一个优先级队列,高度低的区块会被优先取出来。fetcher.loop是单独协程,不断运转,清理fecther中的事务和事件。首先会清理正在fetching的区块,但已经超时。然后处理优先级队列中的区块,判断高度是否是下一个区块,如果是则调用f.insert()函数,校验后调用BlockChain.InsertChain(),成功插入后,广播新区块的Hash。) h: d7 I8 H! e7 p0 N* I& C, x) G
// Loop is the main fetcher loop, checking and processing various notification
// events.% j" D0 e: a4 k) ~9 S
func (f *Fetcher) loop() {
// Iterate the block fetching until a quit is requested
fetchTimer := time.NewTimer(0)
completeTimer := time.NewTimer(0)# M# i; d1 A' i' J! b; P" y
for {* ?/ [6 x# x2 I0 ^
// Clean up any expired block fetches
// 清理过期的区块' i+ _$ @* J$ U
for hash, announce := range f.fetching {' f7 \6 d5 E, [6 @
if time.Since(announce.time) > fetchTimeout {0 x$ b8 H' F4 a3 ~$ C! W5 ] K
f.forgetHash(hash)* j) a1 [/ Y# j( e( q* {
}- G, |# x0 k/ I% p- O) [7 R
}7 X7 g7 g, D: k! r! z t' R! y
// Import any queued blocks that could potentially fit2 e9 Q e4 p% Q) m/ ^1 f9 m
// 导入队列中合适的块8 P0 }: e9 }* r& _1 o
height := f.chainHeight()
for !f.queue.Empty() {
op := f.queue.PopItem().(*inject)
hash := op.block.Hash()
if f.queueChangeHook != nil {
f.queueChangeHook(hash, false)
}
// If too high up the chain or phase, continue later
// 块不是链需要的下一个块,再入优先级队列,停止循环; U8 a# Z& p- u
number := op.block.NumberU64()9 _* `4 s0 b" t8 G
if number > height+1 {$ A) J; z: f. M
f.queue.Push(op, -float32(number))
if f.queueChangeHook != nil {& C% M8 Q0 ^+ Q2 \0 x) q1 H1 u1 G& {
f.queueChangeHook(hash, true)
}
break
}) A' k* L/ h# _( o. w6 q, g+ v
// Otherwise if fresh and still unknown, try and import4 _' _8 W5 N, v1 Z$ L+ R
// 高度正好是我们想要的,并且链上也没有这个块* j$ H( B2 |2 J- S- f
if number+maxUncleDist
func (f *Fetcher) insert(peer string, block *types.Block) {
hash := block.Hash()4 p/ \0 M% u( y8 _
// Run the import on a new thread
log.Debug("Importing propagated block", "peer", peer, "number", block.Number(), "hash", hash)
go func() {
defer func() { f.done - y% U, u, p; j( i/ Z8 V
NewBlockHashesMsg的处理
本节介绍NewBlockHashesMsg的处理,其实,消息处理是简单的,而复杂一点的是从Peer哪获取完整的区块,下节再看。
流程如下:
对消息进行RLP解码,然后标记Peer已经知道此区块。寻找出本地区块链不存在的区块Hash值,把这些未知的Hash通知给fetcher。fetcher.Notify记录好通知信息,塞入notify通道,以便交给fetcher的协程。fetcher.loop()会对notify中的消息进行处理,确认区块并非DOS攻击,然后检查区块的高度,判断该区块是否已经在fetching或者comleting(代表已经下载区块头,在下载body),如果都没有,则加入到announced中,触发0s定时器,进行处理。
关于announced下节再介绍。
0 ]& U& T: t3 m+ e
// handleMsg()部分. x5 q& ~8 I& D& _4 ]$ v
case msg.Code == NewBlockHashesMsg:, N' g; G- E8 d) }7 E. y7 E& l
var announces newBlockHashesData' T5 x; `3 T/ d) v* z3 Q! Z0 i
if err := msg.Decode(&announces); err != nil {
return errResp(ErrDecode, "%v: %v", msg, err)& T- z2 A2 C3 `( Y/ ~& }9 r% X
}
// Mark the hashes as present at the remote node
for _, block := range announces {
p.MarkBlock(block.Hash)
}
// Schedule all the unknown hashes for retrieval- J) \8 T/ S, L
// 把本地链没有的块hash找出来,交给fetcher去下载
unknown := make(newBlockHashesData, 0, len(announces))
for _, block := range announces { Y7 f; \$ U1 @& L
if !pm.blockchain.HasBlock(block.Hash, block.Number) {3 p, i% d8 l7 z- G- U
unknown = append(unknown, block)9 d; O1 H5 ~( Z; i4 @' _
}
}6 z* _8 U3 \% o
for _, block := range unknown {7 z, u2 Y% J' o0 J" i ~5 ]+ E
pm.fetcher.Notify(p.id, block.Hash, block.Number, time.Now(), p.RequestOneHeader, p.RequestBodies)7 k1 P7 C' }9 p& T7 O" D
}' M i6 K, v; Q) V+ z. F
// Notify announces the fetcher of the potential availability of a new block in
// the network.
// 通知fetcher(自己)有新块产生,没有块实体,有hash、高度等信息2 L7 V: z( `" Y2 W- j& v. {
func (f *Fetcher) Notify(peer string, hash common.Hash, number uint64, time time.Time,
headerFetcher headerRequesterFn, bodyFetcher bodyRequesterFn) error {
block := &announce{
hash: hash,
number: number,- T2 U9 L. l& K# I9 [
time: time,$ G; g. T" B* p2 U. U) Q. ~1 m
origin: peer,
fetchHeader: headerFetcher,
fetchBodies: bodyFetcher,) w- Z: q% x3 ]8 x, J: k+ I1 f
}
select {5 D: w: v9 f- m- s$ a: D, ^' c; F8 T
case f.notify hashLimit {
log.Debug("Peer exceeded outstanding announces", "peer", notification.origin, "limit", hashLimit)
propAnnounceDOSMeter.Mark(1)) s$ ~, E0 s5 t, J" P
break
}& t% B d. H, V/ f5 l2 g
// If we have a valid block number, check that it's potentially useful
// 高度检查- l0 W& J3 f) q9 [. ?( ~$ Z8 E( C
if notification.number > 0 {$ [! a1 `0 B8 m: L
if dist := int64(notification.number) - int64(f.chainHeight()); dist maxQueueDist {
log.Debug("Peer discarded announcement", "peer", notification.origin, "number", notification.number, "hash", notification.hash, "distance", dist)3 c5 p0 Z6 a) e- H; O" B8 d
propAnnounceDropMeter.Mark(1)4 a2 Q5 k9 m, p3 D
break4 a$ o/ R; J% A
}( {" q; H$ p' L7 y. H& N3 g& u' g5 w
}2 i1 @8 e; k3 }1 y
// All is well, schedule the announce if block's not yet downloading8 [; C( `; O% M+ `0 r5 Z$ @+ a
// 检查是否已经在下载,已下载则忽略
if _, ok := f.fetching[notification.hash]; ok {
break
}
if _, ok := f.completing[notification.hash]; ok {
break
}( d# F- @5 b+ e8 a# X( ?8 H
// 更新peer已经通知给我们的区块数量
f.announces[notification.origin] = count
// 把通知信息加入到announced,供调度
f.announced[notification.hash] = append(f.announced[notification.hash], notification)
if f.announceChangeHook != nil && len(f.announced[notification.hash]) == 1 {
f.announceChangeHook(notification.hash, true) \' C+ v/ y0 K4 w4 l
}
if len(f.announced) == 1 {
// 有通知放入到announced,则重设0s定时器,loop的另外一个分支会处理这些通知3 N3 w: o* p( @1 F3 z3 w$ y
f.rescheduleFetch(fetchTimer)
}( y4 R2 Q9 x+ j. R: {. \! v
fetcher获取完整区块
本节介绍fetcher获取完整区块的过程,这也是fetcher最重要的功能,会涉及到fetcher至少80%的代码。单独拉放一大节吧。
Fetcher的大头
Fetcher最主要的功能就是获取完整的区块,然后在合适的实际交给InsertChain去验证和插入到本地区块链。我们还是从宏观入手,看Fetcher是如何工作的,一定要先掌握好宏观,因为代码层面上没有这么清晰。6 b' N0 J$ @9 Z4 e& I k
宏观* I6 z- s2 e& H
首先,看两个节点是如何交互,获取完整区块,使用时序图的方式看一下,见图6,流程很清晰不再文字介绍。 [' G1 D9 r" r3 H# @- s" Z
7 [, N) z. }; N$ ^4 F0 G: A
再看下获取区块过程中,fetcher内部的状态转移,它使用状态来记录,要获取的区块在什么阶段,见图7。我稍微解释一下:' ~$ l8 c: b! a
收到NewBlockHashesMsg后,相关信息会记录到announced,进入announced状态,代表了本节点接收了消息。announced由fetcher协程处理,经过校验后,会向给他发送消息的Peer发送请求,请求该区块的区块头,然后进入fetching状态。获取区块头后,如果区块头表示没有交易和uncle,则转移到completing状态,并且使用区块头合成完整的区块,加入到queued优先级队列。获取区块头后,如果区块头表示该区块有交易和uncle,则转移到fetched状态,然后发送请求,请求交易和uncle,然后转移到completing状态。收到交易和uncle后,使用头、交易、uncle这3个信息,生成完整的区块,加入到队列queued。7 ~5 j; R: ?4 V" M$ F3 ^& g7 O
; q9 j* [- U8 F. m- E* f0 `$ q+ Y7 l
微观/ |& A4 U2 `7 L
接下来就是从代码角度看如何获取完整区块的流程了,有点多,看不懂的时候,再回顾下上面宏观的介绍图。
首先看Fetcher的定义,它存放了通信数据和状态管理,捡加注释的看,上文提到的状态,里面都有。
// Fetcher is responsible for accumulating block announcements from various peers4 t! X' |5 q" S, q/ h9 B
// and scheduling them for retrieval.3 s+ ^! R6 M( b. O8 \
// 积累块通知,然后调度获取这些块6 v: e4 S1 Z' M: X
type Fetcher struct {( k; C; g4 w t- M
// Various event channels
// 收到区块hash值的通道
notify chan *announce
// 收到完整区块的通道
inject chan *inject
blockFilter chan chan []*types.Block
// 过滤header的通道的通道$ h5 ?7 b, ?. B+ G6 J! j
headerFilter chan chan *headerFilterTask1 H' P$ y$ Q" ]% Y3 x5 |/ o5 e
// 过滤body的通道的通道. A! t# ]4 F& ?( U( h
bodyFilter chan chan *bodyFilterTask% T( L, ~. D) Z
done chan common.Hash% T2 @ j4 Y' P, h$ x
quit chan struct{}6 t4 `1 T. M2 Z% W9 r
// Announce states
// Peer已经给了本节点多少区块头通知
announces map[string]int // Per peer announce counts to prevent memory exhaustion
// 已经announced的区块列表
announced map[common.Hash][]*announce // Announced blocks, scheduled for fetching
// 正在fetching区块头的请求+ k' ~. |* x+ A% P5 O+ q O' L
fetching map[common.Hash]*announce // Announced blocks, currently fetching
// 已经fetch到区块头,还差body的请求,用来获取body
fetched map[common.Hash][]*announce // Blocks with headers fetched, scheduled for body retrieval
// 已经得到区块头的& [$ p/ p1 g: U" _$ w9 Q
completing map[common.Hash]*announce // Blocks with headers, currently body-completing! M7 _/ q; O7 Y- q* U; C( ?+ ?0 ]4 Z0 U
// Block cache3 a+ d+ J) `& v8 _! C! P2 s
// queue,优先级队列,高度做优先级3 g! i' c/ m( f; _
// queues,统计peer通告了多少块
// queued,代表这个块如队列了,. S* N. ~2 C+ h3 F2 @ T
queue *prque.Prque // Queue containing the import operations (block number sorted)
queues map[string]int // Per peer block counts to prevent memory exhaustion2 G8 U& T5 |7 l* N
queued map[common.Hash]*inject // Set of already queued blocks (to dedupe imports)# e: }$ Y, y7 U5 e
// Callbacks
getBlock blockRetrievalFn // Retrieves a block from the local chain
verifyHeader headerVerifierFn // Checks if a block's headers have a valid proof of work,验证区块头,包含了PoW验证
broadcastBlock blockBroadcasterFn // Broadcasts a block to connected peers,广播给peer% g+ P% E) E* _3 Y
chainHeight chainHeightFn // Retrieves the current chain's height/ ^' d; q8 K5 Q8 F5 T+ X7 ]# K
insertChain chainInsertFn // Injects a batch of blocks into the chain,插入区块到链的函数
dropPeer peerDropFn // Drops a peer for misbehaving
// Testing hooks
announceChangeHook func(common.Hash, bool) // Method to call upon adding or deleting a hash from the announce list4 e2 n) a* b8 T- ~! H) Z
queueChangeHook func(common.Hash, bool) // Method to call upon adding or deleting a block from the import queue
fetchingHook func([]common.Hash) // Method to call upon starting a block (eth/61) or header (eth/62) fetch8 z# c2 H* l2 M) S7 X
completingHook func([]common.Hash) // Method to call upon starting a block body fetch (eth/62)
importedHook func(*types.Block) // Method to call upon successful block import (both eth/61 and eth/62)
}7 n+ a- o- z. m N; z5 a
NewBlockHashesMsg消息的处理前面的小节已经讲过了,不记得可向前翻看。这里从announced的状态处理说起。loop() 中,fetchTimer超时后,代表了收到了消息通知,需要处理,会从announced中选择出需要处理的通知,然后创建请求,请求区块头,由于可能有很多节点都通知了它某个区块的Hash,所以随机的从这些发送消息的Peer中选择一个Peer,发送请求的时候,为每个Peer都创建了单独的协程。6 Z8 X, f6 B8 t2 O/ `
case arriveTimeout-gatherSlack {
// Pick a random peer to retrieve from, reset all others" U6 ]; S3 ]" C+ g
// 可能有很多peer都发送了这个区块的hash值,随机选择一个peer
announce := announces[rand.Intn(len(announces))]
f.forgetHash(hash)
// If the block still didn't arrive, queue for fetching
// 本地还没有这个区块,创建获取区块的请求
if f.getBlock(hash) == nil {4 Y0 g( `" v0 |$ A6 `8 Y1 G
request[announce.origin] = append(request[announce.origin], hash)
f.fetching[hash] = announce
}
}
}. Z+ R$ @; n, q# m
// Send out all block header requests9 t( l1 o. D$ v1 }
// 把所有的request发送出去9 ^/ {3 d8 e& v( t w3 y. y
// 为每一个peer都创建一个协程,然后请求所有需要从该peer获取的请求
for peer, hashes := range request {, ~8 I' y7 h9 x0 r6 u
log.Trace("Fetching scheduled headers", "peer", peer, "list", hashes)
// Create a closure of the fetch and schedule in on a new thread
fetchHeader, hashes := f.fetching[hashes[0]].fetchHeader, hashes/ `, \! s+ u$ a! G. R4 H
go func() {
if f.fetchingHook != nil {
f.fetchingHook(hashes), U( i1 r: r a8 g, L; h
}
for _, hash := range hashes {
headerFetchMeter.Mark(1)$ R1 r! F- L/ `# S2 s. \0 u8 y
fetchHeader(hash) // Suboptimal, but protocol doesn't allow batch header retrievals
}% j0 W2 q" j% B& r8 T2 K
}()3 o6 R f# S% w' X
}2 q# [% Y; R D" u8 M3 G! z U# Z
// Schedule the next fetch if blocks are still pending
f.rescheduleFetch(fetchTimer)' F6 q( k) V# W: C! Q/ C$ R* T. ~$ ?
从Notify的调用中,可以看出,fetcherHeader()的实际函数是RequestOneHeader(),该函数使用的消息是GetBlockHeadersMsg,可以用来请求多个区块头,不过fetcher只请求一个。
pm.fetcher.Notify(p.id, block.Hash, block.Number, time.Now(), p.RequestOneHeader, p.RequestBodies)$ w! x' S& T5 p. Q
// RequestOneHeader is a wrapper around the header query functions to fetch a
// single header. It is used solely by the fetcher.: z( d) ? Q& x. g+ O
func (p *peer) RequestOneHeader(hash common.Hash) error {
p.Log().Debug("Fetching single header", "hash", hash)
return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: hash}, Amount: uint64(1), Skip: uint64(0), Reverse: false})
}9 l% b6 |5 T, U' Q* O% [1 e
GetBlockHeadersMsg的处理如下:因为它是获取多个区块头的,所以处理起来比较“麻烦”,还好,fetcher只获取一个区块头,其处理在20行~33行,获取下一个区块头的处理逻辑,这里就不看了,最后调用SendBlockHeaders()将区块头发送给请求的节点,消息是BlockHeadersMsg。* [0 J% N" _5 x" | G8 U: B
···, R4 t9 X" D' ^9 i
// handleMsg()
// Block header query, collect the requested headers and reply: n8 r% s3 U6 G6 H" d$ ?
case msg.Code == GetBlockHeadersMsg:: u; a0 A) f+ V9 T0 m
// Decode the complex header query
var query getBlockHeadersData
if err := msg.Decode(&query); err != nil {
return errResp(ErrDecode, “%v: %v”, msg, err)5 c0 b- u* Q0 ~. j% x2 S
} {# [. V( T3 s ?0 v
hashMode := query.Origin.Hash != (common.Hash{})
// Gather headers until the fetch or network limits is reached2 ~# |' R- ^5 ^# a
// 收集区块头,直到达到限制( N/ a! y1 C7 `
var (
bytes common.StorageSize
headers []*types.Header
unknown bool
), ^% X, I; U0 p5 x
// 自己已知区块 && 少于查询的数量 && 大小小于2MB && 小于能下载的最大数量
for !unknown && len(headers) 3 R6 D: m6 K" l6 S
`BlockHeadersMsg`的处理很有意思,因为`GetBlockHeadersMsg`并不是fetcher独占的消息,downloader也可以调用,所以,响应消息的处理需要分辨出是fetcher请求的,还是downloader请求的。它的处理逻辑是:fetcher先过滤收到的区块头,如果fetcher不要的,那就是downloader的,在调用`fetcher.FilterHeaders`的时候,fetcher就将自己要的区块头拿走了。# q3 D C( L% Y% X/ \# x, m8 K$ m
// handleMsg()
case msg.Code == BlockHeadersMsg:
// A batch of headers arrived to one of our previous requests
var headers []*types.Header2 |9 O: Z z" c: G# F
if err := msg.Decode(&headers); err != nil {
return errResp(ErrDecode, “msg %v: %v”, msg, err)& Y3 P9 Z' N# o6 ~
}% e/ v& N8 ]; I$ x1 D" Y# m8 Y- m2 k3 q
// If no headers were received, but we’re expending a DAO fork check, maybe it’s that8 \' F5 m) V: j! W1 W* J+ |
// 检查是不是当前DAO的硬分叉' D6 I4 V; r. i: D' O# a$ v
if len(headers) == 0 && p.forkDrop != nil {
// Possibly an empty reply to the fork header checks, sanity check TDs% \' O. q& }; ^ T* w2 T6 ?
verifyDAO := true. B) F% ]; ]1 p$ [
// If we already have a DAO header, we can check the peer's TD against it. If
// the peer's ahead of this, it too must have a reply to the DAO check
if daoHeader := pm.blockchain.GetHeaderByNumber(pm.chainconfig.DAOForkBlock.Uint64()); daoHeader != nil {/ Y/ l3 N; D9 q2 v; s+ C& A
if _, td := p.Head(); td.Cmp(pm.blockchain.GetTd(daoHeader.Hash(), daoHeader.Number.Uint64())) >= 0 {
verifyDAO = false
}
}8 E" r; q' s- \- R) f, b, h
// If we're seemingly on the same chain, disable the drop timer4 N, s8 D. }. c. o
if verifyDAO {
p.Log().Debug("Seems to be on the same side of the DAO fork")5 A( s1 s5 Q O; \! T& V$ a
p.forkDrop.Stop()
p.forkDrop = nil
return nil: k. f% e( j% b' g; C0 z s. z
} @/ E+ E2 o3 Z- A. ?; X
}( W' ?6 a# \( Y3 `# d
// Filter out any explicitly requested headers, deliver the rest to the downloader
// 过滤是不是fetcher请求的区块头,去掉fetcher请求的区块头再交给downloader
filter := len(headers) == 12 L8 j6 E8 o1 I9 c; D+ a# Q9 G
if filter {
// If it's a potential DAO fork check, validate against the rules- s5 m& h h6 n0 ]. P5 s
// 检查是否硬分叉( Q. s5 M& M, z" x0 n: j* t
if p.forkDrop != nil && pm.chainconfig.DAOForkBlock.Cmp(headers[0].Number) == 0 { U, b3 d7 H* b! o0 O* @" {( t
// Disable the fork drop timer
p.forkDrop.Stop()
p.forkDrop = nil
// Validate the header and either drop the peer or continue
if err := misc.VerifyDAOHeaderExtraData(pm.chainconfig, headers[0]); err != nil {
p.Log().Debug("Verified to be on the other side of the DAO fork, dropping")
return err
}
p.Log().Debug("Verified to be on the same side of the DAO fork")1 M' ^2 C" `% H4 J* ^
return nil* Q# S z0 N4 Y$ s a
}
// Irrelevant of the fork checks, send the header to the fetcher just in case
// 使用fetcher过滤区块头& m* M1 ?' }- j3 ^7 L x
headers = pm.fetcher.FilterHeaders(p.id, headers, time.Now())
}
// 剩下的区块头交给downloader) { u- G' B, R) y1 V. o5 E" z! }# o
if len(headers) > 0 || !filter {4 ~/ ^" y C% Z8 D1 }, N
err := pm.downloader.DeliverHeaders(p.id, headers)8 Q- J* q8 c$ ?1 z8 ?
if err != nil {
log.Debug("Failed to deliver headers", "err", err)$ I! g) T+ W. c ?+ [8 ^
}
}+ g8 H r M' N% A- y
`FilterHeaders()`是一个很有大智慧的函数,看起来耐人寻味,但实在妙。它要把所有的区块头,都传递给fetcher协程,还要获取fetcher协程处理后的结果。`fetcher.headerFilter`是存放通道的通道,而`filter`是存放包含区块头过滤任务的通道。它先把`filter`传递给了`headerFilter`,这样`fetcher`协程就在另外一段等待了,而后将`headerFilterTask`传入`filter`,`fetcher`就能读到数据了,处理后,再将数据写回`filter`而刚好被`FilterHeaders`函数处理了,该函数实际运行在`handleMsg()`的协程中。; H$ F. j# H+ n1 G) A
每个Peer都会分配一个ProtocolManager然后处理该Peer的消息,但`fetcher`只有一个事件处理协程,如果不创建一个`filter`,fetcher哪知道是谁发给它的区块头呢?过滤之后,该如何发回去呢?) r2 l/ a! W a/ }6 e+ q/ f
// FilterHeaders extracts all the headers that were explicitly requested by the fetcher,
// returning those that should be handled differently.3 J4 J1 c( {% H: K' h8 ]6 y8 _
// 寻找出fetcher请求的区块头
func (f *Fetcher) FilterHeaders(peer string, headers []*types.Header, time time.Time) []*types.Header { |2 b }( p' @& b8 [
log.Trace(“Filtering headers”, “peer”, peer, “headers”, len(headers))
// Send the filter channel to the fetcher% }' z) z5 ~, M" a6 s
// 任务通道+ u! G* C4 H* P+ ?
filter := make(chan *headerFilterTask)
select {5 K! ^1 p1 |/ x: H; y( @
// 任务通道发送到这个通道- t1 [4 d6 E. u% F3 z/ V& @# w! B. m
case f.headerFilter
}
接下来要看f.headerFilter的处理,这段代码有90行,它做了一下几件事:6 l, l: Q. ~6 X1 h0 @$ g
1. 从`f.headerFilter`取出`filter`,然后取出过滤任务`task`。
2. 它把区块头分成3类:`unknown`这不是分是要返回给调用者的,即`handleMsg()`, `incomplete`存放还需要获取body的区块头,`complete`存放只包含区块头的区块。遍历所有的区块头,填到到对应的分类中,具体的判断可看18行的注释,记住宏观中将的状态转移图。 c0 W$ `/ V6 s& h% ?1 p2 I# J
3. 把`unknonw`中的区块返回给`handleMsg()`。5 J1 l, Y/ r3 O; Q
4. 把` incomplete`的区块头获取状态移动到`fetched`状态,然后触发定时器,以便去处理complete的区块。( Z+ }8 [7 Q1 v8 N g! O
5. 把`compelete`的区块加入到`queued`。9 `* O6 M9 l2 k* [/ S/ A V' P
// fetcher.loop()0 E' O& v# M! s% z4 D6 s. S
case filter :=
// Split the batch of headers into unknown ones (to return to the caller), N4 A3 z" E1 ~0 }1 F
// known incomplete ones (requiring body retrievals) and completed blocks.% H; y1 f2 {3 m) f
// unknown的不是fetcher请求的,complete放没有交易和uncle的区块,有头就够了,incomplete放6 R/ i$ A' Y# P8 X
// 还需要获取uncle和交易的区块# ^2 R/ U3 L! {# ]
unknown, incomplete, complete := []*types.Header{}, []*announce{}, []*types.Block{}
// 遍历所有收到的header
for _, header := range task.headers {
hash := header.Hash()
// Filter fetcher-requested headers from other synchronisation algorithms
// 是正在获取的hash,并且对应请求的peer,并且未fetched,未completing,未queued
if announce := f.fetching[hash]; announce != nil && announce.origin == task.peer && f.fetched[hash] == nil && f.completing[hash] == nil && f.queued[hash] == nil {/ r$ K0 i/ F0 j& z E x
// If the delivered header does not match the promised number, drop the announcer8 [( J% S0 ~) E1 R4 Y% K9 f
// 高度校验,竟然不匹配,扰乱秩序,peer肯定是坏蛋。( A9 |" e7 a4 S; G6 v2 w3 ?/ m
if header.Number.Uint64() != announce.number {6 D8 L" b: y5 @4 c3 L7 n
log.Trace("Invalid block number fetched", "peer", announce.origin, "hash", header.Hash(), "announced", announce.number, "provided", header.Number)/ l1 @; V7 ]1 h
f.dropPeer(announce.origin)
f.forgetHash(hash)- V4 U G' f6 t
continue
}! T0 Z. d; j3 t. e
// Only keep if not imported by other means
// 本地链没有当前区块( v# D4 O1 S. ?
if f.getBlock(hash) == nil {0 B* c/ q' S9 X+ y
announce.header = header
announce.time = task.time5 Z' C" \8 v7 n6 m8 @: z
// If the block is empty (header only), short circuit into the final import queue! M6 O, O0 C+ b o
// 如果区块没有交易和uncle,加入到complete1 R' j* M8 c3 Q1 B+ P
if header.TxHash == types.DeriveSha(types.Transactions{}) && header.UncleHash == types.CalcUncleHash([]*types.Header{}) {, l7 a6 z: m) I8 k9 g% {
log.Trace("Block empty, skipping body retrieval", "peer", announce.origin, "number", header.Number, "hash", header.Hash())- _) f u2 V: e1 q2 e
block := types.NewBlockWithHeader(header)& N3 d7 ?( g" c
block.ReceivedAt = task.time
complete = append(complete, block)
f.completing[hash] = announce
continue6 Y( a7 i% y- t. O9 O# K
}, o: _( }6 ~: s0 k: p- j3 z
// Otherwise add to the list of blocks needing completion
// 否则就是不完整的区块/ o. ?6 l5 D* z3 }; t9 b$ @
incomplete = append(incomplete, announce)
} else {1 [; _4 w& R8 q
log.Trace("Block already imported, discarding header", "peer", announce.origin, "number", header.Number, "hash", header.Hash())6 `' H# O5 \8 V. Y
f.forgetHash(hash)7 z' m, W3 s; S9 z% Y
}$ d( C0 W/ |! @, d; r6 s3 b# v5 Z
} else {7 q3 t$ M1 b7 C$ w, S4 H1 V
// Fetcher doesn't know about it, add to the return list) A- u7 f* ^$ `; y- B& {; I, K
// 没请求过的header
unknown = append(unknown, header)
}
}
// 把未知的区块头,再传递会filter# E& X3 J) x! ?
headerFilterOutMeter.Mark(int64(len(unknown)))
select {
case filter
跟随状态图的转义,剩下的工作是`fetched`转移到`completing` ,上面的流程已经触发了`completeTimer`定时器,超时后就会处理,流程与请求Header类似,不再赘述,此时发送的请求消息是`GetBlockBodiesMsg`,实际调的函数是`RequestBodies`。
// fetcher.loop()
case
// 遍历所有待获取body的announce4 N2 N5 i, }7 Y6 k* C; c
for hash, announces := range f.fetched {$ }# }9 r3 i8 u% \
// Pick a random peer to retrieve from, reset all others( t! D8 ?$ e5 H2 |/ W
// 随机选一个Peer发送请求,因为可能已经有很多Peer通知它这个区块了
announce := announces[rand.Intn(len(announces))]
f.forgetHash(hash)
// If the block still didn't arrive, queue for completion6 R8 f7 m: q* `) C" r, d4 _
// 如果本地没有这个区块,则放入到completing,创建请求2 [0 Q- s b. B+ D# [
if f.getBlock(hash) == nil {, `' X# b, Z6 `
request[announce.origin] = append(request[announce.origin], hash)" S8 Y( E2 w" e9 z
f.completing[hash] = announce- F3 Q4 y3 Q7 K+ E
}6 e8 X8 S2 }1 k; x
}" K0 `3 w- [: D0 S
// Send out all block body requests% W3 H0 o! A& N2 n" w# H
// 发送所有的请求,获取body,依然是每个peer一个单独协程# f/ W8 c: q9 t; |
for peer, hashes := range request {
log.Trace("Fetching scheduled bodies", "peer", peer, "list", hashes)
// Create a closure of the fetch and schedule in on a new thread
if f.completingHook != nil {
f.completingHook(hashes)- o9 f7 Y* V2 L7 C
}
bodyFetchMeter.Mark(int64(len(hashes)))! D: u+ I3 A n3 L; s8 b4 k( k
go f.completing[hashes[0]].fetchBodies(hashes)( ]+ A2 w! s a. ~5 r
}! H$ L: _' g2 G# s. ]0 R
// Schedule the next fetch if blocks are still pending0 q" i8 c1 i' V
f.rescheduleComplete(completeTimer)
`handleMsg()`处理该消息也是干净利落,直接获取RLP格式的body,然后发送响应消息。1 c' D, L9 j4 o7 Y
// handleMsg()
case msg.Code == GetBlockBodiesMsg:" K" S, w$ R* n! Z0 w' m1 E# j
// Decode the retrieval message
msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size))
if _, err := msgStream.List(); err != nil {0 ~3 N o2 z$ {+ P
return err6 ?+ E( b3 x7 ]6 u5 K! w
}
// Gather blocks until the fetch or network limits is reached
var (; {! `. E- x6 A( _+ K4 j p
hash common.Hash7 m5 i8 S! i( f X! K8 r
bytes int- D( `! N+ `4 E# S# O9 Z
bodies []rlp.RawValue' P, h" a5 b! |( q: i( G7 P6 |
)& D" ~& l2 {" m: y, q8 A' N) j
// 遍历所有请求8 ? S; \# X1 }" @/ G
for bytes
响应消息`BlockBodiesMsg`的处理与处理获取header的处理原理相同,先交给fetcher过滤,然后剩下的才是downloader的。需要注意一点,响应消息里只包含交易列表和叔块列表。
// handleMsg()1 |1 U1 f& i3 I! H! m# X& U" C4 j& e
case msg.Code == BlockBodiesMsg:
// A batch of block bodies arrived to one of our previous requests
var request blockBodiesData
if err := msg.Decode(&request); err != nil {2 [* U/ U1 G$ D2 m* l! r2 ^
return errResp(ErrDecode, “msg %v: %v”, msg, err)1 l. `3 x! u4 t4 o2 `1 K8 X
}3 p/ f' }, R* ? T5 v6 S
// Deliver them all to the downloader for queuing
// 传递给downloader去处理
transactions := make([][]*types.Transaction, len(request)). G4 d" W$ z1 u; {! G ]; L
uncles := make([][]*types.Header, len(request)), K/ N: n7 \/ P# O6 o9 R% B- j9 h
for i, body := range request {4 J- ]" D# i$ [2 F! s% i y! f
transactions = body.Transactions
uncles = body.Uncles3 [$ m: G% O/ N. h+ I8 J/ |
}
// Filter out any explicitly requested bodies, deliver the rest to the downloader0 V; J7 e U* }6 {
// 先让fetcher过滤去fetcher请求的body,剩下的给downloader
filter := len(transactions) > 0 || len(uncles) > 0: N! A m; C% U; ^* S$ h0 y2 ~
if filter {0 p1 [& N7 S! n, R. t* D% v
transactions, uncles = pm.fetcher.FilterBodies(p.id, transactions, uncles, time.Now())
}
// 剩下的body交给downloader" b( W# G6 P, U9 s
if len(transactions) > 0 || len(uncles) > 0 || !filter {
err := pm.downloader.DeliverBodies(p.id, transactions, uncles)
if err != nil {) X+ `7 N' K& @, z
log.Debug("Failed to deliver bodies", "err", err)& f) V3 s" F1 M6 C7 G) y U
}9 \2 R' h/ g0 H7 a: m. S! K
}
过滤函数的原理也与Header相同。
// FilterBodies extracts all the block bodies that were explicitly requested by& ? [% a! X' \+ m1 @
// the fetcher, returning those that should be handled differently.
// 过去出fetcher请求的body,返回它没有处理的,过程类型header的处理' x6 x; |* f* A' R) q$ }& P
func (f *Fetcher) FilterBodies(peer string, transactions [][]*types.Transaction, uncles [][]*types.Header, time time.Time) ([][]*types.Transaction, [][]*types.Header) {
log.Trace(“Filtering bodies”, “peer”, peer, “txs”, len(transactions), “uncles”, len(uncles))
// Send the filter channel to the fetcher
filter := make(chan *bodyFilterTask)
select {1 ?$ ?3 Z/ i6 i- w7 G- [
case f.bodyFilter 2 \; ?( u R7 Z) w! H& E" [
}1 H+ H: T8 [' K7 k6 A
实际过滤body的处理瞧一下,这和Header的处理是不同的。直接看不点:4 z8 Z3 s" n/ F) T b4 W, e
1. 它要的区块,单独取出来存到`blocks`中,它不要的继续留在`task`中。8 Y3 r3 n* b1 B% h& e z2 a8 a
2. 判断是不是fetcher请求的方法:如果交易列表和叔块列表计算出的hash值与区块头中的一样,并且消息来自请求的Peer,则就是fetcher请求的。8 ]7 E) s' E! J# J/ p
3. 将`blocks`中的区块加入到`queued`,终结。
case filter :=
blocks := []*types.Block{}, {( n8 x6 P3 ~( e" Y, S8 ~6 y3 @
// 获取的每个body的txs列表和uncle列表
// 遍历每个区块的txs列表和uncle列表,计算hash后判断是否是当前fetcher请求的body. [3 H# j7 z9 c: e7 @' f: z
for i := 0; i * \" Z4 @- g; m! J% h% ?+ c
}
# k: o/ B% u3 h2 @% M3 |! K
至此,fetcher获取完整区块的流程讲完了,fetcher模块中80%的代码也都贴出来了,还有2个值得看看的函数:6 a" X3 q0 [* M0 I
1. `forgetHash(hash common.Hash)`:用于清空指定hash指的记/状态录信息。
2. `forgetBlock(hash common.Hash)`:用于从队列中移除一个区块。
最后了,再回到开始看看fetcher模块和新区块的传播流程,有没有豁然开朗。& p/ R. {. T$ U% z
成为第一个吐槽的人