以太坊源码分析:fetcher模块和区块传播
刘艳琴
发表于 2022-12-21 01:53:48
228
0
0
当前代码是以太坊Release 1.8,如果版本不同,代码上可能存在差异。
总体过程和传播策略: d( y, d0 j9 p4 B2 N% b
本节从宏观角度介绍,节点产生区块后,为了传播给远端节点做了啥,远端节点收到区块后又做了什么,每个节点都连接了很多Peer,它传播的策略是什么样的?
总体流程和策略可以总结为,传播给远端Peer节点,Peer验证区块无误后,加入到本地区块链,继续传播新区块信息。具体过程如下。
先看总体过程。产生区块后,miner模块会发布一个事件NewMinedBlockEvent,订阅事件的协程收到事件后,就会把新区块的消息,广播给它所有的peer,peer收到消息后,会交给自己的fetcher模块处理,fetcher进行基本的验证后,区块没问题,发现这个区块就是本地链需要的下一个区块,则交给blockChain进一步进行完整的验证,这个过程会执行区块所有的交易,无误后把区块加入到本地链,写入数据库,这个过程就是下面的流程图,图1。8 Y9 Y5 [$ j4 K8 W
2 r5 X# Y( V( t1 \- N
总体流程图,能看到有个分叉,是因为节点传播新区块是有策略的。它的传播策略为:
假如节点连接了N个Peer,它只向Peer列表的sqrt(N)个Peer广播完整的区块消息。向所有的Peer广播只包含区块Hash的消息。
策略图的效果如图2,红色节点将区块传播给黄色节点:
收到区块Hash的节点,需要从发送给它消息的Peer那里获取对应的完整区块,获取区块后就会按照图1的流程,加入到fetcher队列,最终插入本地区块链后,将区块的Hash值广播给和它相连,但还不知道这个区块的Peer。非产生区块节点的策略图,如图3,黄色节点将区块Hash传播给青色节点:( `) c$ X0 j+ X
至此,可以看出以太坊采用以石击水的方式,像水纹一样,层层扩散新产生的区块。
Fetcher模块是干啥的
fetcher模块的功能,就是收集其他Peer通知它的区块信息:1)完整的区块2)区块Hash消息。根据通知的消息,获取完整的区块,然后传递给eth模块把区块插入区块链。
如果是完整区块,就可以传递给eth插入区块,如果只有区块Hash,则需要从其他的Peer获取此完整的区块,然后再传递给eth插入区块
源码解读8 Q8 g; w: S, R+ n0 u
本节介绍区块传播和处理的细节东西,方式仍然是先用图解释流程,再是代码流程。; U% q, C: A4 K- ^
产块节点的传播新区块3 t1 M" i7 s: O5 j0 j% n
节点产生区块后,广播的流程可以表示为图4:/ l# X& c1 l- K, f9 S% v6 q6 M
发布事件事件处理函数选择要广播完整的Peer,然后将区块加入到它们的队列事件处理函数把区块Hash添加到所有Peer的另外一个通知队列每个Peer的广播处理函数,会遍历它的待广播区块队列和通知队列,把数据封装成消息,调用P2P接口发送出去
: i; q* z3 G/ Y r
再看下代码上的细节。: C1 U* K e4 k* C! n, w8 U1 K
worker.wait()函数发布事件NewMinedBlockEvent。ProtocolManager.minedBroadcastLoop()是事件处理函数。它调用了2次pm.BroadcastBlock()。1 t8 ?2 M2 R. ]% P, d3 t
. p6 N% a U1 Y( b
// Mined broadcast loop+ \3 p2 v! E, h0 x* V- f2 y! t
func (pm *ProtocolManager) minedBroadcastLoop() {
// automatically stops if unsubscribe- |" B& K# ]0 ]
for obj := range pm.minedBlockSub.Chan() {, T$ d+ K. M2 r# K# ~3 c
switch ev := obj.Data.(type) {
case core.NewMinedBlockEvent:
pm.BroadcastBlock(ev.Block, true) // First propagate block to peers
pm.BroadcastBlock(ev.Block, false) // Only then announce to the rest0 F/ p. t, i, k7 w( W9 J
}
}. M9 ]9 T4 h/ g, a/ Z8 Z, H) l$ Q
} t4 \7 v* s' M- I8 ]
pm.BroadcastBlock()的入参propagate为真时,向部分Peer广播完整的区块,调用peer.AsyncSendNewBlock(),否则向所有Peer广播区块头,调用peer.AsyncSendNewBlockHash(),这2个函数就是把数据放入队列,此处不再放代码。# e6 C3 S1 V" a; t0 Z$ E# m" x
// BroadcastBlock will either propagate a block to a subset of it's peers, or8 c! U; j; ~' E
// will only announce it's availability (depending what's requested).$ c3 B' R3 v1 T) J* t# R
func (pm *ProtocolManager) BroadcastBlock(block *types.Block, propagate bool) {; i5 V1 B& @" E" h+ J/ K
hash := block.Hash()
peers := pm.peers.PeersWithoutBlock(hash)
// If propagation is requested, send to a subset of the peer2 `$ C6 m+ x1 I2 C: F, n
// 这种情况,要把区块广播给部分peer$ d' _3 J7 @1 T3 B. `
if propagate {
// Calculate the TD of the block (it's not imported yet, so block.Td is not valid)9 J3 N3 |8 d% X- M( w+ Z0 \
// 计算新的总难度
var td *big.Int
if parent := pm.blockchain.GetBlock(block.ParentHash(), block.NumberU64()-1); parent != nil {
td = new(big.Int).Add(block.Difficulty(), pm.blockchain.GetTd(block.ParentHash(), block.NumberU64()-1))
} else {
log.Error("Propagating dangling block", "number", block.Number(), "hash", hash)7 }+ X: U8 B, X5 n2 O3 j: Q
return
}9 E( t, H0 G' u; S
// Send the block to a subset of our peers5 Q; b6 D9 o j ~
// 广播区块给部分peer$ U X3 `$ U* }# T
transfer := peers[:int(math.Sqrt(float64(len(peers))))]
for _, peer := range transfer {* `' T1 f% W: y, _! d
peer.AsyncSendNewBlock(block, td)
} W; S# {, [& }8 ^! F
log.Trace("Propagated block", "hash", hash, "recipients", len(transfer), "duration", common.PrettyDuration(time.Since(block.ReceivedAt))) h' W+ v9 N8 I; B( m
return9 c4 S! ?( A$ [0 o9 v. D! |
}- g; r9 ~' V) t; c$ x5 ]; X5 n0 h' l1 y
// Otherwise if the block is indeed in out own chain, announce it
// 把区块hash值广播给所有peer9 \& t2 w. D$ J2 |6 Z
if pm.blockchain.HasBlock(hash, block.NumberU64()) {
for _, peer := range peers {
peer.AsyncSendNewBlockHash(block)9 h. t( z: ]- x ? c' F
}
log.Trace("Announced block", "hash", hash, "recipients", len(peers), "duration", common.PrettyDuration(time.Since(block.ReceivedAt)))+ y& S) u1 X7 P _6 N
}
}! ?5 o1 s; s! y& N' Z. l
peer.broadcase()是每个Peer连接的广播函数,它只广播3种消息:交易、完整的区块、区块的Hash,这样表明了节点只会主动广播这3中类型的数据,剩余的数据同步,都是通过请求-响应的方式。
// broadcast is a write loop that multiplexes block propagations, announcements
// and transaction broadcasts into the remote peer. The goal is to have an async
// writer that does not lock up node internals.7 y. T4 w9 g1 e' N
func (p *peer) broadcast() {: L8 F0 x5 U: d8 n. ^
for {% z y$ F3 g- J' G
select {8 F( j) c; C; g. d( r' [) P# b
// 广播交易
case txs := % v" A5 b4 L" i S& S
Peer节点处理新区块
本节介绍远端节点收到2种区块同步消息的处理,其中NewBlockMsg的处理流程比较清晰,也简洁。NewBlockHashesMsg消息的处理就绕了2绕,从总体流程图1上能看出来,它需要先从给他发送消息Peer那里获取到完整的区块,剩下的流程和NewBlockMsg又一致了。+ p# `- O J& R% E
这部分涉及的模块多,画出来有种眼花缭乱的感觉,但只要抓住上面的主线,代码看起来还是很清晰的。通过图5先看下整体流程。7 X( h$ C; N, H- S
消息处理的起点是ProtocolManager.handleMsg,NewBlockMsg的处理流程是蓝色标记的区域,红色区域是单独的协程,是fetcher处理队列中区块的流程,如果从队列中取出的区块是当前链需要的,校验后,调用blockchian.InsertChain()把区块插入到区块链,最后写入数据库,这是黄色部分。最后,绿色部分是NewBlockHashesMsg的处理流程,代码流程上是比较复杂的,为了能通过图描述整体流程,我把它简化掉了。4 X2 u% m1 a% Q5 t# L. U$ v
仔细看看这幅图,掌握整体的流程后,接下来看每个步骤的细节。+ Z! c# t7 u3 v, s
NewBlockMsg的处理
本节介绍节点收到完整区块的处理,流程如下:
首先进行RLP编解码,然后标记发送消息的Peer已经知道这个区块,这样本节点最后广播这个区块的Hash时,不会再发送给该Peer。- x" y# a' _2 o4 \# A2 [. F( B( D
将区块存入到fetcher的队列,调用fetcher.Enqueue。
更新Peer的Head位置,然后判断本地链是否落后于Peer的链,如果是,则通过Peer更新本地链。
只看handle.Msg()的NewBlockMsg相关的部分。
case msg.Code == NewBlockMsg:
// Retrieve and decode the propagated block& r7 \, W! }: C
// 收到新区块,解码,赋值接收数据* O* @7 q! d( \' ?
var request newBlockData& s/ N% o2 T! {' {- I9 t4 \
if err := msg.Decode(&request); err != nil {# G) v. S5 t E; c9 }' O3 N
return errResp(ErrDecode, "%v: %v", msg, err)
}
request.Block.ReceivedAt = msg.ReceivedAt) _+ {/ g6 U& q
request.Block.ReceivedFrom = p& B5 C- f0 L3 _* E I
// Mark the peer as owning the block and schedule it for import; M' ?6 P3 m* `, Y, w
// 标记peer知道这个区块
p.MarkBlock(request.Block.Hash())! U ]: L5 E& z9 q" k. R
// 为啥要如队列?已经得到完整的区块了
// 答:存入fetcher的优先级队列,fetcher会从队列中选取当前高度需要的块) f; S( [' r6 \/ r, d
pm.fetcher.Enqueue(p.id, request.Block)2 Q1 p4 @) h8 y' M I
// Assuming the block is importable by the peer, but possibly not yet done so,
// calculate the head hash and TD that the peer truly must have.7 F4 G3 [7 o; [, B7 ^
// 截止到parent区块的头和难度' I+ N* t6 ?7 O& m% i0 Y- O
var (5 P/ a1 {* l" V7 a0 Y
trueHead = request.Block.ParentHash()
trueTD = new(big.Int).Sub(request.TD, request.Block.Difficulty())
)
// Update the peers total difficulty if better than the previous: P$ n5 x7 g1 X) t3 I
// 如果收到的块的难度大于peer之前的,以及自己本地的,就去和这个peer同步
// 问题:就只用了一下块里的hash指,为啥不直接使用这个块呢,如果这个块不能用,干嘛不少发送些数据,减少网络负载呢。, q$ ]5 {- i( q* t6 ]0 ~
// 答案:实际上,这个块加入到了优先级队列中,当fetcher的loop检查到当前下一个区块的高度,正是队列中有的,则不再向peer请求( t4 e/ Z. _5 {) h
// 该区块,而是直接使用该区块,检查无误后交给block chain执行insertChain- S( C- c! r4 T9 V2 l
if _, td := p.Head(); trueTD.Cmp(td) > 0 {
p.SetHead(trueHead, trueTD)
// Schedule a sync if above ours. Note, this will not fire a sync for a gap of
// a singe block (as the true TD is below the propagated block), however this5 }% `6 z) V9 A, d+ {
// scenario should easily be covered by the fetcher.
currentBlock := pm.blockchain.CurrentBlock(); p6 F& J; j+ n" K8 c- O% X
if trueTD.Cmp(pm.blockchain.GetTd(currentBlock.Hash(), currentBlock.NumberU64())) > 0 {" a4 S5 f5 {/ G' Q
go pm.synchronise(p)! i" T/ b+ b( b7 n- @
} {# o, r! q* L3 X( o, S
}
//------------------------ 以上 handleMsg
// Enqueue tries to fill gaps the the fetcher's future import queue. h2 R' R3 Y& l+ B9 w/ h
// 发给inject通道,当前协程在handleMsg,通过通道发送给fetcher的协程处理
func (f *Fetcher) Enqueue(peer string, block *types.Block) error {
op := &inject{
origin: peer,) ~% O0 k& H0 L" Z2 _% Y
block: block,+ W, V$ E* E6 o7 |% v0 z3 h. _
}: N) B5 C! H/ g4 D0 R
select {
case f.inject blockLimit {
log.Debug("Discarded propagated block, exceeded allowance", "peer", peer, "number", block.Number(), "hash", hash, "limit", blockLimit)0 H, v; c& w7 e8 i
propBroadcastDOSMeter.Mark(1)7 g2 x1 M( q! I* r
f.forgetHash(hash)! M4 e- l) U3 V' Z) E/ t" L0 c
return+ q5 t& i3 V( i. l9 I6 N+ E) Q
}
// Discard any past or too distant blocks
// 高度检查:未来太远的块丢弃
if dist := int64(block.NumberU64()) - int64(f.chainHeight()); dist maxQueueDist {
log.Debug("Discarded propagated block, too far away", "peer", peer, "number", block.Number(), "hash", hash, "distance", dist). b8 L* |1 d) k# Z
propBroadcastDropMeter.Mark(1)
f.forgetHash(hash)4 l& H( Q n2 R0 M, {$ ]2 M2 {7 |
return
}$ p Y$ p# }: l
// Schedule the block for future importing% m3 j9 n+ S/ e& x
// 块先加入优先级队列,加入链之前,还有很多要做
if _, ok := f.queued[hash]; !ok {5 v0 R0 W& \1 \2 F, k4 M
op := &inject{
origin: peer,
block: block, M) h5 a3 m! v4 k T/ k4 @/ m
}
f.queues[peer] = count
f.queued[hash] = op
f.queue.Push(op, -float32(block.NumberU64()))
if f.queueChangeHook != nil {
f.queueChangeHook(op.block.Hash(), true)
}
log.Debug("Queued propagated block", "peer", peer, "number", block.Number(), "hash", hash, "queued", f.queue.Size())
}/ w O* q7 a2 W# s4 @, r
}
fetcher队列处理
本节我们看看,区块加入队列后,fetcher如何处理区块,为何不直接校验区块,插入到本地链?
由于以太坊又Uncle的机制,节点可能收到老一点的一些区块。另外,节点可能由于网络原因,落后了几个区块,所以可能收到“未来”的一些区块,这些区块都不能直接插入到本地链。
区块入的队列是一个优先级队列,高度低的区块会被优先取出来。fetcher.loop是单独协程,不断运转,清理fecther中的事务和事件。首先会清理正在fetching的区块,但已经超时。然后处理优先级队列中的区块,判断高度是否是下一个区块,如果是则调用f.insert()函数,校验后调用BlockChain.InsertChain(),成功插入后,广播新区块的Hash。
// Loop is the main fetcher loop, checking and processing various notification
// events.6 _1 \" _9 U1 r* `: S. _
func (f *Fetcher) loop() {
// Iterate the block fetching until a quit is requested) M2 r5 o" I, {
fetchTimer := time.NewTimer(0)
completeTimer := time.NewTimer(0)
for {: H$ W" @- i; `6 u
// Clean up any expired block fetches( U9 m" i9 I, W! _7 x' E; J4 U
// 清理过期的区块" q+ s0 s! `% O
for hash, announce := range f.fetching { G& s1 ]1 `2 V0 w+ l
if time.Since(announce.time) > fetchTimeout {
f.forgetHash(hash)
}' B+ h) L7 E& O9 C
}
// Import any queued blocks that could potentially fit8 ?; r+ ^2 k, m$ `, x+ w$ H0 l' S
// 导入队列中合适的块
height := f.chainHeight()
for !f.queue.Empty() {
op := f.queue.PopItem().(*inject)
hash := op.block.Hash()
if f.queueChangeHook != nil {; Q) E9 o% m& I
f.queueChangeHook(hash, false)0 H8 Y8 ^7 j# t' s* k, B
}
// If too high up the chain or phase, continue later
// 块不是链需要的下一个块,再入优先级队列,停止循环
number := op.block.NumberU64()
if number > height+1 {3 b( i6 ?# v* }. Z
f.queue.Push(op, -float32(number))
if f.queueChangeHook != nil {1 K( s9 m5 m% i3 {/ ^' B1 Y
f.queueChangeHook(hash, true)( |7 U1 }4 Z3 @( w5 E, o
}1 _# {) n! m3 P4 [ h
break
}! o- l# D% f' V* c0 ~, j
// Otherwise if fresh and still unknown, try and import
// 高度正好是我们想要的,并且链上也没有这个块
if number+maxUncleDist
func (f *Fetcher) insert(peer string, block *types.Block) {4 O g0 B& M& ^% c: f1 _$ {0 N! c
hash := block.Hash()8 \0 h6 N6 f2 t. t2 d k
// Run the import on a new thread1 i' M% j2 ?; D5 f7 _* J D
log.Debug("Importing propagated block", "peer", peer, "number", block.Number(), "hash", hash)
go func() {
defer func() { f.done
NewBlockHashesMsg的处理5 [% w/ W2 E6 g. b
本节介绍NewBlockHashesMsg的处理,其实,消息处理是简单的,而复杂一点的是从Peer哪获取完整的区块,下节再看。3 ^, a; _8 L% L" j; H" h
流程如下:- J) g6 X/ E8 F0 b# h
对消息进行RLP解码,然后标记Peer已经知道此区块。寻找出本地区块链不存在的区块Hash值,把这些未知的Hash通知给fetcher。fetcher.Notify记录好通知信息,塞入notify通道,以便交给fetcher的协程。fetcher.loop()会对notify中的消息进行处理,确认区块并非DOS攻击,然后检查区块的高度,判断该区块是否已经在fetching或者comleting(代表已经下载区块头,在下载body),如果都没有,则加入到announced中,触发0s定时器,进行处理。1 D* _# F) C: q1 Z: b8 Q) C4 P, {
关于announced下节再介绍。
; D6 e6 A, B: I3 @
// handleMsg()部分
case msg.Code == NewBlockHashesMsg:
var announces newBlockHashesData$ x* s/ z8 Q2 ^
if err := msg.Decode(&announces); err != nil {( H; }' f3 E9 B- G1 b C; l
return errResp(ErrDecode, "%v: %v", msg, err)3 G# O+ e8 Z" X, S# z, I# J. M, {
}
// Mark the hashes as present at the remote node
for _, block := range announces {; y6 U5 E+ t1 b# q1 A5 l, {" D
p.MarkBlock(block.Hash)
}/ A: w% ~; G, i+ i* S3 d3 c
// Schedule all the unknown hashes for retrieval4 c* Y, Q3 U$ F8 v+ `
// 把本地链没有的块hash找出来,交给fetcher去下载) F9 A# ~0 W6 F( F8 r. ^1 I
unknown := make(newBlockHashesData, 0, len(announces))6 u& f. B. ^1 s& r9 z
for _, block := range announces {
if !pm.blockchain.HasBlock(block.Hash, block.Number) {
unknown = append(unknown, block)
}
}
for _, block := range unknown { k: j' I! E6 f, A
pm.fetcher.Notify(p.id, block.Hash, block.Number, time.Now(), p.RequestOneHeader, p.RequestBodies)
}" J0 h! X' U0 A% w5 X3 ~. K4 [
// Notify announces the fetcher of the potential availability of a new block in2 T c& o# e& q5 }; B+ K9 [
// the network.- W& k2 ?- C5 k9 t6 l- `0 ]. k
// 通知fetcher(自己)有新块产生,没有块实体,有hash、高度等信息9 i' A& c# |% j$ J, T, D: t) L
func (f *Fetcher) Notify(peer string, hash common.Hash, number uint64, time time.Time,: [) @$ n' \; m. G# _
headerFetcher headerRequesterFn, bodyFetcher bodyRequesterFn) error {
block := &announce{
hash: hash,# p W( _& d" J) j4 A* N
number: number,
time: time,# e$ g4 n: K2 a c8 u* y
origin: peer,
fetchHeader: headerFetcher,( k' G/ t5 i/ l# C9 f1 Z2 B
fetchBodies: bodyFetcher,
}
select {# M, |4 ?7 L0 c' L' [7 Y
case f.notify hashLimit {: k: _4 R5 C" l+ T
log.Debug("Peer exceeded outstanding announces", "peer", notification.origin, "limit", hashLimit) U/ x) O; E6 Z! [4 @
propAnnounceDOSMeter.Mark(1)
break( | g; d, h& o
}
// If we have a valid block number, check that it's potentially useful4 |6 K: f. k8 q2 ~: J
// 高度检查2 P' @* P: [4 u9 g
if notification.number > 0 {
if dist := int64(notification.number) - int64(f.chainHeight()); dist maxQueueDist {" [9 ?$ z- D- j- }) E
log.Debug("Peer discarded announcement", "peer", notification.origin, "number", notification.number, "hash", notification.hash, "distance", dist)- u$ n O! y- {
propAnnounceDropMeter.Mark(1)
break5 \2 E+ r9 ^/ e! p8 F6 E. N
}- l% y8 \; Y! M5 Z% K
}& c l6 m! d7 R' } x. A2 N
// All is well, schedule the announce if block's not yet downloading; t# Z: n, o+ k" Q, H8 Z2 h
// 检查是否已经在下载,已下载则忽略- n: l" K; ]- M& X) h
if _, ok := f.fetching[notification.hash]; ok {
break$ C$ Q8 y( r$ ]2 G/ |
}
if _, ok := f.completing[notification.hash]; ok {
break1 U( l. ~( t- w# ^! ?$ _# Z
}
// 更新peer已经通知给我们的区块数量
f.announces[notification.origin] = count
// 把通知信息加入到announced,供调度
f.announced[notification.hash] = append(f.announced[notification.hash], notification): }: J% f" N! {5 ]/ j9 G' z7 K
if f.announceChangeHook != nil && len(f.announced[notification.hash]) == 1 {
f.announceChangeHook(notification.hash, true)
}
if len(f.announced) == 1 {4 G" F I; g; u% }9 `; n* S9 m
// 有通知放入到announced,则重设0s定时器,loop的另外一个分支会处理这些通知
f.rescheduleFetch(fetchTimer)$ g& D q# s& M4 i5 y
}
fetcher获取完整区块- A5 ]. W2 ^0 l" I/ U$ q. N2 |4 X
本节介绍fetcher获取完整区块的过程,这也是fetcher最重要的功能,会涉及到fetcher至少80%的代码。单独拉放一大节吧。/ P$ L t& l' k8 N( M
Fetcher的大头
Fetcher最主要的功能就是获取完整的区块,然后在合适的实际交给InsertChain去验证和插入到本地区块链。我们还是从宏观入手,看Fetcher是如何工作的,一定要先掌握好宏观,因为代码层面上没有这么清晰。- H6 F# t9 L" b; W8 Z3 Z
宏观* m: \5 C1 @* T
首先,看两个节点是如何交互,获取完整区块,使用时序图的方式看一下,见图6,流程很清晰不再文字介绍。 Z' ~8 M" ^+ A- H
再看下获取区块过程中,fetcher内部的状态转移,它使用状态来记录,要获取的区块在什么阶段,见图7。我稍微解释一下:$ c3 `' i; C: j0 k4 y. d9 X& y
收到NewBlockHashesMsg后,相关信息会记录到announced,进入announced状态,代表了本节点接收了消息。announced由fetcher协程处理,经过校验后,会向给他发送消息的Peer发送请求,请求该区块的区块头,然后进入fetching状态。获取区块头后,如果区块头表示没有交易和uncle,则转移到completing状态,并且使用区块头合成完整的区块,加入到queued优先级队列。获取区块头后,如果区块头表示该区块有交易和uncle,则转移到fetched状态,然后发送请求,请求交易和uncle,然后转移到completing状态。收到交易和uncle后,使用头、交易、uncle这3个信息,生成完整的区块,加入到队列queued。
+ R9 g2 ]' h& ^
微观
接下来就是从代码角度看如何获取完整区块的流程了,有点多,看不懂的时候,再回顾下上面宏观的介绍图。, F1 N/ Y* R7 p7 Q( _1 p
首先看Fetcher的定义,它存放了通信数据和状态管理,捡加注释的看,上文提到的状态,里面都有。
// Fetcher is responsible for accumulating block announcements from various peers
// and scheduling them for retrieval.
// 积累块通知,然后调度获取这些块
type Fetcher struct {9 @& P6 y2 e2 t2 n8 h
// Various event channels5 U1 @* l' s4 i7 Z3 O/ v
// 收到区块hash值的通道 f1 U! D$ h. y! O* k. z% L
notify chan *announce7 V3 v5 N& b7 `
// 收到完整区块的通道
inject chan *inject( ~5 J! \: n0 W
blockFilter chan chan []*types.Block; B& ?% K& g$ Q8 B) O5 e
// 过滤header的通道的通道2 }% p) N; h$ @9 B) ], E) V
headerFilter chan chan *headerFilterTask2 ]! G+ ^+ h) H9 k! M3 D
// 过滤body的通道的通道 Z; L' g; S/ w( `! l M: @% P, n
bodyFilter chan chan *bodyFilterTask/ ^$ V7 E6 l4 }% M+ U
done chan common.Hash/ d4 i0 X# [2 {
quit chan struct{}8 E$ g( n. r0 K- K" [: {
// Announce states
// Peer已经给了本节点多少区块头通知 [8 ]! ?; ]5 ^
announces map[string]int // Per peer announce counts to prevent memory exhaustion3 }" E! _& f' Q) Q- G& F
// 已经announced的区块列表. w2 b5 B u N. o3 {% t
announced map[common.Hash][]*announce // Announced blocks, scheduled for fetching
// 正在fetching区块头的请求
fetching map[common.Hash]*announce // Announced blocks, currently fetching: ]' T: {3 `. ^0 |
// 已经fetch到区块头,还差body的请求,用来获取body
fetched map[common.Hash][]*announce // Blocks with headers fetched, scheduled for body retrieval
// 已经得到区块头的 R; U7 w0 b4 K7 |- M/ k
completing map[common.Hash]*announce // Blocks with headers, currently body-completing
// Block cache7 C. @- T6 e2 w6 P( Q( }
// queue,优先级队列,高度做优先级; T) [2 z6 J# E# o
// queues,统计peer通告了多少块
// queued,代表这个块如队列了,
queue *prque.Prque // Queue containing the import operations (block number sorted)% l" O/ H" \ ]7 k' f% l
queues map[string]int // Per peer block counts to prevent memory exhaustion" I. \1 B; J) M& _
queued map[common.Hash]*inject // Set of already queued blocks (to dedupe imports)
// Callbacks
getBlock blockRetrievalFn // Retrieves a block from the local chain
verifyHeader headerVerifierFn // Checks if a block's headers have a valid proof of work,验证区块头,包含了PoW验证
broadcastBlock blockBroadcasterFn // Broadcasts a block to connected peers,广播给peer
chainHeight chainHeightFn // Retrieves the current chain's height8 H% T4 t, o0 @3 q" ~, y& X
insertChain chainInsertFn // Injects a batch of blocks into the chain,插入区块到链的函数) k2 z, [* F2 i" O# H
dropPeer peerDropFn // Drops a peer for misbehaving$ V- C9 A( i8 q: t
// Testing hooks
announceChangeHook func(common.Hash, bool) // Method to call upon adding or deleting a hash from the announce list
queueChangeHook func(common.Hash, bool) // Method to call upon adding or deleting a block from the import queue) D9 s/ T- o0 n, N- U/ l$ L
fetchingHook func([]common.Hash) // Method to call upon starting a block (eth/61) or header (eth/62) fetch
completingHook func([]common.Hash) // Method to call upon starting a block body fetch (eth/62)' h, x: X1 R& F' s: D) G# N( P- A
importedHook func(*types.Block) // Method to call upon successful block import (both eth/61 and eth/62). m) d$ K- J7 ]
}
NewBlockHashesMsg消息的处理前面的小节已经讲过了,不记得可向前翻看。这里从announced的状态处理说起。loop() 中,fetchTimer超时后,代表了收到了消息通知,需要处理,会从announced中选择出需要处理的通知,然后创建请求,请求区块头,由于可能有很多节点都通知了它某个区块的Hash,所以随机的从这些发送消息的Peer中选择一个Peer,发送请求的时候,为每个Peer都创建了单独的协程。
case arriveTimeout-gatherSlack {0 f- W/ f0 V; {
// Pick a random peer to retrieve from, reset all others
// 可能有很多peer都发送了这个区块的hash值,随机选择一个peer( f' H; Z) q$ S! g( l( y% e0 h
announce := announces[rand.Intn(len(announces))]
f.forgetHash(hash) x, K8 j) H+ s! `
// If the block still didn't arrive, queue for fetching/ k( z8 d, }. k' G+ }/ z' { O% H% Q
// 本地还没有这个区块,创建获取区块的请求5 l) ?* e" y& i9 e$ l
if f.getBlock(hash) == nil {0 N4 L, ]& S' W* m9 P X' H1 A+ b
request[announce.origin] = append(request[announce.origin], hash)5 M! [! g; d( i( O
f.fetching[hash] = announce3 v+ y$ x9 g% |5 [+ [2 a* I0 ?
}
}4 O9 D" T4 X1 t R# x
}
// Send out all block header requests
// 把所有的request发送出去" d% s7 j" {+ l3 t( m X
// 为每一个peer都创建一个协程,然后请求所有需要从该peer获取的请求
for peer, hashes := range request {( T: k# p& t' B. H2 s
log.Trace("Fetching scheduled headers", "peer", peer, "list", hashes)
// Create a closure of the fetch and schedule in on a new thread& H& @: ~5 z' y# `: B/ J
fetchHeader, hashes := f.fetching[hashes[0]].fetchHeader, hashes
go func() {
if f.fetchingHook != nil {* |) P9 Z$ X* A+ |
f.fetchingHook(hashes)+ X8 J# ]- ]/ Z! D' ?$ h
}
for _, hash := range hashes {
headerFetchMeter.Mark(1)
fetchHeader(hash) // Suboptimal, but protocol doesn't allow batch header retrievals" A) u; e5 u! ?) R8 A/ ^
}$ L7 W9 ?/ ]' \
}()0 x2 ~: x9 X, c
}% D) p) z ?* b- s! A
// Schedule the next fetch if blocks are still pending% f( l) o' t4 w' H9 }
f.rescheduleFetch(fetchTimer)
从Notify的调用中,可以看出,fetcherHeader()的实际函数是RequestOneHeader(),该函数使用的消息是GetBlockHeadersMsg,可以用来请求多个区块头,不过fetcher只请求一个。
pm.fetcher.Notify(p.id, block.Hash, block.Number, time.Now(), p.RequestOneHeader, p.RequestBodies); W. F# `' Z4 z. j
// RequestOneHeader is a wrapper around the header query functions to fetch a
// single header. It is used solely by the fetcher.! C- M" Q0 \- S. [
func (p *peer) RequestOneHeader(hash common.Hash) error {
p.Log().Debug("Fetching single header", "hash", hash)7 p, y2 ~6 A3 ~) w
return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: hash}, Amount: uint64(1), Skip: uint64(0), Reverse: false})/ k4 o0 a4 L$ U/ O
} A1 g1 ~. T' S. M' A
GetBlockHeadersMsg的处理如下:因为它是获取多个区块头的,所以处理起来比较“麻烦”,还好,fetcher只获取一个区块头,其处理在20行~33行,获取下一个区块头的处理逻辑,这里就不看了,最后调用SendBlockHeaders()将区块头发送给请求的节点,消息是BlockHeadersMsg。
···
// handleMsg(); q$ a/ \* [4 q6 y$ Z- B d5 c
// Block header query, collect the requested headers and reply
case msg.Code == GetBlockHeadersMsg:
// Decode the complex header query S& ?7 G [* c/ d7 E2 y
var query getBlockHeadersData0 }% z4 D) E; G$ d
if err := msg.Decode(&query); err != nil {3 E d, c2 X- \; C2 d
return errResp(ErrDecode, “%v: %v”, msg, err)
}2 I1 @/ ?3 @6 O U/ x- P
hashMode := query.Origin.Hash != (common.Hash{})
// Gather headers until the fetch or network limits is reached5 {8 }1 ]! b6 G- o
// 收集区块头,直到达到限制+ O. n- D8 F3 P$ Y- s
var (
bytes common.StorageSize; \4 ?5 d) p4 H3 r8 z2 E
headers []*types.Header
unknown bool
)
// 自己已知区块 && 少于查询的数量 && 大小小于2MB && 小于能下载的最大数量
for !unknown && len(headers)
`BlockHeadersMsg`的处理很有意思,因为`GetBlockHeadersMsg`并不是fetcher独占的消息,downloader也可以调用,所以,响应消息的处理需要分辨出是fetcher请求的,还是downloader请求的。它的处理逻辑是:fetcher先过滤收到的区块头,如果fetcher不要的,那就是downloader的,在调用`fetcher.FilterHeaders`的时候,fetcher就将自己要的区块头拿走了。% g5 D( M3 }5 x% X4 T2 |0 T
// handleMsg()0 J6 }8 V' m G
case msg.Code == BlockHeadersMsg:& H1 P# a9 ~2 S3 p+ [
// A batch of headers arrived to one of our previous requests
var headers []*types.Header
if err := msg.Decode(&headers); err != nil {1 ^* G! i6 f* u
return errResp(ErrDecode, “msg %v: %v”, msg, err), M, ?) Y0 q( l$ [
}
// If no headers were received, but we’re expending a DAO fork check, maybe it’s that; Y: N, o* u, x
// 检查是不是当前DAO的硬分叉& k7 j# f0 m' I' L+ t
if len(headers) == 0 && p.forkDrop != nil {
// Possibly an empty reply to the fork header checks, sanity check TDs
verifyDAO := true
// If we already have a DAO header, we can check the peer's TD against it. If% R& H6 C( j1 D+ g ~0 {$ j" ~# h
// the peer's ahead of this, it too must have a reply to the DAO check
if daoHeader := pm.blockchain.GetHeaderByNumber(pm.chainconfig.DAOForkBlock.Uint64()); daoHeader != nil {
if _, td := p.Head(); td.Cmp(pm.blockchain.GetTd(daoHeader.Hash(), daoHeader.Number.Uint64())) >= 0 {9 N/ B0 H$ i1 X: a" u' t7 \
verifyDAO = false4 Q+ ~7 m2 E/ a7 g6 P
}# A0 c6 J2 F: k
}
// If we're seemingly on the same chain, disable the drop timer# r7 J& `- y. n- [0 V
if verifyDAO {
p.Log().Debug("Seems to be on the same side of the DAO fork")
p.forkDrop.Stop()
p.forkDrop = nil% u- e$ |- I( ~) i) n
return nil
}
}
// Filter out any explicitly requested headers, deliver the rest to the downloader- T+ P1 F; \% P1 w. |
// 过滤是不是fetcher请求的区块头,去掉fetcher请求的区块头再交给downloader$ V6 |& u, Z4 z2 z' c
filter := len(headers) == 19 K* x6 x+ w- j! j/ i. A" V
if filter {
// If it's a potential DAO fork check, validate against the rules
// 检查是否硬分叉1 B) Z$ l2 g2 ?! F/ v! @
if p.forkDrop != nil && pm.chainconfig.DAOForkBlock.Cmp(headers[0].Number) == 0 {1 k1 R& f1 I+ _6 w" h) r
// Disable the fork drop timer( a; L) D( A8 o; E0 |
p.forkDrop.Stop()) y+ H, _& A7 n: N/ e" w
p.forkDrop = nil: j, S% H- W8 `+ i$ L5 o( G
// Validate the header and either drop the peer or continue9 T/ J; p* s" U1 N
if err := misc.VerifyDAOHeaderExtraData(pm.chainconfig, headers[0]); err != nil {0 T/ B/ H7 B* U
p.Log().Debug("Verified to be on the other side of the DAO fork, dropping")
return err. z; H1 ^ _+ U% z5 {! p( p# L; r
}" t9 e* u/ q1 `0 C
p.Log().Debug("Verified to be on the same side of the DAO fork")
return nil
}
// Irrelevant of the fork checks, send the header to the fetcher just in case( M) g2 S5 N9 ~
// 使用fetcher过滤区块头/ y9 K$ N! {. \6 B& Y N; u* F
headers = pm.fetcher.FilterHeaders(p.id, headers, time.Now()); G3 @2 T1 Y9 Y2 R0 q
}2 ?3 x3 Q8 p5 x
// 剩下的区块头交给downloader
if len(headers) > 0 || !filter {
err := pm.downloader.DeliverHeaders(p.id, headers)) ^- \% d2 }" B8 `* L
if err != nil {
log.Debug("Failed to deliver headers", "err", err)
}
}( _* H: z2 k0 O
`FilterHeaders()`是一个很有大智慧的函数,看起来耐人寻味,但实在妙。它要把所有的区块头,都传递给fetcher协程,还要获取fetcher协程处理后的结果。`fetcher.headerFilter`是存放通道的通道,而`filter`是存放包含区块头过滤任务的通道。它先把`filter`传递给了`headerFilter`,这样`fetcher`协程就在另外一段等待了,而后将`headerFilterTask`传入`filter`,`fetcher`就能读到数据了,处理后,再将数据写回`filter`而刚好被`FilterHeaders`函数处理了,该函数实际运行在`handleMsg()`的协程中。
每个Peer都会分配一个ProtocolManager然后处理该Peer的消息,但`fetcher`只有一个事件处理协程,如果不创建一个`filter`,fetcher哪知道是谁发给它的区块头呢?过滤之后,该如何发回去呢?
// FilterHeaders extracts all the headers that were explicitly requested by the fetcher,( f/ d2 |( ], y
// returning those that should be handled differently.
// 寻找出fetcher请求的区块头6 g# V0 C, C0 T$ ?$ I$ I- g
func (f *Fetcher) FilterHeaders(peer string, headers []*types.Header, time time.Time) []*types.Header {
log.Trace(“Filtering headers”, “peer”, peer, “headers”, len(headers))
// Send the filter channel to the fetcher
// 任务通道' p3 I; ~+ H0 B# R
filter := make(chan *headerFilterTask)
select {
// 任务通道发送到这个通道5 B) F! d" O- z' r9 G: j
case f.headerFilter
}
接下来要看f.headerFilter的处理,这段代码有90行,它做了一下几件事:
1. 从`f.headerFilter`取出`filter`,然后取出过滤任务`task`。8 g/ w; N; ^! ]$ ]6 U0 f3 j
2. 它把区块头分成3类:`unknown`这不是分是要返回给调用者的,即`handleMsg()`, `incomplete`存放还需要获取body的区块头,`complete`存放只包含区块头的区块。遍历所有的区块头,填到到对应的分类中,具体的判断可看18行的注释,记住宏观中将的状态转移图。
3. 把`unknonw`中的区块返回给`handleMsg()`。
4. 把` incomplete`的区块头获取状态移动到`fetched`状态,然后触发定时器,以便去处理complete的区块。
5. 把`compelete`的区块加入到`queued`。5 f8 u" `$ r9 B/ Q9 T. N0 Z
// fetcher.loop()4 e/ o) X2 @) B- g: e, M( C
case filter := ( F/ E; C, S) ]' p: l8 G
// Split the batch of headers into unknown ones (to return to the caller),
// known incomplete ones (requiring body retrievals) and completed blocks.: v/ R# f b8 D i2 ]: `2 S
// unknown的不是fetcher请求的,complete放没有交易和uncle的区块,有头就够了,incomplete放
// 还需要获取uncle和交易的区块3 S' U2 z; A5 s
unknown, incomplete, complete := []*types.Header{}, []*announce{}, []*types.Block{} y( a, p* `& d4 s. s6 ], P
// 遍历所有收到的header
for _, header := range task.headers {
hash := header.Hash()* @+ e/ b' [2 `$ \4 s
// Filter fetcher-requested headers from other synchronisation algorithms# G! S, k+ h; _
// 是正在获取的hash,并且对应请求的peer,并且未fetched,未completing,未queued
if announce := f.fetching[hash]; announce != nil && announce.origin == task.peer && f.fetched[hash] == nil && f.completing[hash] == nil && f.queued[hash] == nil {
// If the delivered header does not match the promised number, drop the announcer
// 高度校验,竟然不匹配,扰乱秩序,peer肯定是坏蛋。+ [% @% e N' D: `0 E
if header.Number.Uint64() != announce.number {' ?1 c8 ~" J. [% X, ?3 L+ T6 h
log.Trace("Invalid block number fetched", "peer", announce.origin, "hash", header.Hash(), "announced", announce.number, "provided", header.Number)
f.dropPeer(announce.origin)
f.forgetHash(hash)
continue
}
// Only keep if not imported by other means) H. k" h4 I! n" {4 h6 P' n
// 本地链没有当前区块
if f.getBlock(hash) == nil {
announce.header = header
announce.time = task.time
// If the block is empty (header only), short circuit into the final import queue( r( j2 `& J2 @9 ~- v
// 如果区块没有交易和uncle,加入到complete' o/ z0 G# [# b$ q- U; k) T, L
if header.TxHash == types.DeriveSha(types.Transactions{}) && header.UncleHash == types.CalcUncleHash([]*types.Header{}) {
log.Trace("Block empty, skipping body retrieval", "peer", announce.origin, "number", header.Number, "hash", header.Hash())* @5 H7 P% V! t2 I. s9 Q7 Q- S
block := types.NewBlockWithHeader(header)
block.ReceivedAt = task.time
complete = append(complete, block)
f.completing[hash] = announce
continue7 L9 E# k& D b
}" H& {2 o" t# H4 U ` [( _
// Otherwise add to the list of blocks needing completion, G* X8 B( c; y8 @7 d$ D/ f7 E
// 否则就是不完整的区块9 U. B" q. t+ k
incomplete = append(incomplete, announce)
} else {
log.Trace("Block already imported, discarding header", "peer", announce.origin, "number", header.Number, "hash", header.Hash())
f.forgetHash(hash)
}
} else {2 u6 k' u6 I' |
// Fetcher doesn't know about it, add to the return list% X. |7 U/ j$ {0 r q
// 没请求过的header
unknown = append(unknown, header)
} @7 L; p$ A* Y- Y
}
// 把未知的区块头,再传递会filter: V, L4 ~! J& x! t+ {
headerFilterOutMeter.Mark(int64(len(unknown)))
select {
case filter
跟随状态图的转义,剩下的工作是`fetched`转移到`completing` ,上面的流程已经触发了`completeTimer`定时器,超时后就会处理,流程与请求Header类似,不再赘述,此时发送的请求消息是`GetBlockBodiesMsg`,实际调的函数是`RequestBodies`。( g1 C. H) @( @1 e# c. I; U
// fetcher.loop()
case + C" f& N* W! ?5 A( V& f; e. N+ C! L
// 遍历所有待获取body的announce E) J) G$ Q; Q, p. f& V; ~
for hash, announces := range f.fetched {
// Pick a random peer to retrieve from, reset all others5 B/ Y. Y& y, t# D4 }7 A0 M' }
// 随机选一个Peer发送请求,因为可能已经有很多Peer通知它这个区块了
announce := announces[rand.Intn(len(announces))]! I9 b4 E3 Q s* a! j4 W
f.forgetHash(hash)
// If the block still didn't arrive, queue for completion
// 如果本地没有这个区块,则放入到completing,创建请求
if f.getBlock(hash) == nil {
request[announce.origin] = append(request[announce.origin], hash)$ D6 ^9 h+ L, P4 r
f.completing[hash] = announce
}
}& q: o7 b/ y7 C7 F1 ?9 k
// Send out all block body requests. R" d& P5 r; g& f
// 发送所有的请求,获取body,依然是每个peer一个单独协程6 i3 g" J2 j! v- H% o8 d) l
for peer, hashes := range request {
log.Trace("Fetching scheduled bodies", "peer", peer, "list", hashes)
// Create a closure of the fetch and schedule in on a new thread( {7 H7 y, |8 V' ~; a1 N
if f.completingHook != nil {
f.completingHook(hashes)
}
bodyFetchMeter.Mark(int64(len(hashes)))2 J1 y$ ^* j6 t' a* [. d1 x
go f.completing[hashes[0]].fetchBodies(hashes)
}
// Schedule the next fetch if blocks are still pending$ B# T2 D: C% i5 N& m) h% H; v
f.rescheduleComplete(completeTimer)
`handleMsg()`处理该消息也是干净利落,直接获取RLP格式的body,然后发送响应消息。( x5 C& p; k& N- G/ W
// handleMsg()2 k$ G6 ]- O+ i$ {6 g' N8 l) I
case msg.Code == GetBlockBodiesMsg:
// Decode the retrieval message
msgStream := rlp.NewStream(msg.Payload, uint64(msg.Size))
if _, err := msgStream.List(); err != nil {
return err
}( g) F: P2 I3 ]$ A# l5 |4 v, d
// Gather blocks until the fetch or network limits is reached
var (
hash common.Hash: Z9 ~3 L( u0 k3 |, S
bytes int
bodies []rlp.RawValue
)8 R0 A: W* k0 U- t/ |, e
// 遍历所有请求
for bytes & k/ V6 v F7 c; W; I
响应消息`BlockBodiesMsg`的处理与处理获取header的处理原理相同,先交给fetcher过滤,然后剩下的才是downloader的。需要注意一点,响应消息里只包含交易列表和叔块列表。$ N' i) r; p& a% y" H) K* k' F I
// handleMsg()
case msg.Code == BlockBodiesMsg:
// A batch of block bodies arrived to one of our previous requests
var request blockBodiesData
if err := msg.Decode(&request); err != nil { R3 G3 u0 o$ [8 u5 ?
return errResp(ErrDecode, “msg %v: %v”, msg, err). q7 z( s$ ]$ n& d; b
}, S' a( F1 `) X4 h8 R! p
// Deliver them all to the downloader for queuing" k/ a9 t5 c% j. D- `: v+ @
// 传递给downloader去处理
transactions := make([][]*types.Transaction, len(request))
uncles := make([][]*types.Header, len(request)). o) D3 q; g9 Y; E1 C. q
for i, body := range request {
transactions = body.Transactions
uncles = body.Uncles
}& x3 i2 N& N5 U+ }& P2 C
// Filter out any explicitly requested bodies, deliver the rest to the downloader# y; \7 ]9 e8 _; a9 k0 N- k
// 先让fetcher过滤去fetcher请求的body,剩下的给downloader
filter := len(transactions) > 0 || len(uncles) > 0" Q: p7 P& B. s
if filter {
transactions, uncles = pm.fetcher.FilterBodies(p.id, transactions, uncles, time.Now())1 ^. T# o5 H0 t) p& u: A
} N) x8 C' {# t& N! Y' A
// 剩下的body交给downloader
if len(transactions) > 0 || len(uncles) > 0 || !filter {# L0 J# L+ C- p; G* P, R: l% R
err := pm.downloader.DeliverBodies(p.id, transactions, uncles)8 A: L6 P, C% Z& J
if err != nil {
log.Debug("Failed to deliver bodies", "err", err)
}: Y* r+ |+ x: m
}: i3 o! |& y0 p
过滤函数的原理也与Header相同。
// FilterBodies extracts all the block bodies that were explicitly requested by8 A' T1 k5 w# b* g9 q8 H& Q
// the fetcher, returning those that should be handled differently.3 _4 r4 T& ?! v; W* r7 S! {
// 过去出fetcher请求的body,返回它没有处理的,过程类型header的处理
func (f *Fetcher) FilterBodies(peer string, transactions [][]*types.Transaction, uncles [][]*types.Header, time time.Time) ([][]*types.Transaction, [][]*types.Header) {
log.Trace(“Filtering bodies”, “peer”, peer, “txs”, len(transactions), “uncles”, len(uncles))
// Send the filter channel to the fetcher! Z" p2 e5 I, W; R) |+ f
filter := make(chan *bodyFilterTask)) m8 o/ G0 R' L& a; ^
select {
case f.bodyFilter
}) P1 a; \, O8 t3 s2 Y) ~/ ?6 n
实际过滤body的处理瞧一下,这和Header的处理是不同的。直接看不点:
1. 它要的区块,单独取出来存到`blocks`中,它不要的继续留在`task`中。3 j# i% |/ e' g5 F
2. 判断是不是fetcher请求的方法:如果交易列表和叔块列表计算出的hash值与区块头中的一样,并且消息来自请求的Peer,则就是fetcher请求的。" O& S# {# y- e* s- O
3. 将`blocks`中的区块加入到`queued`,终结。4 S/ J( @# Q9 b; L4 K5 y/ W
case filter :=
blocks := []*types.Block{}
// 获取的每个body的txs列表和uncle列表* j/ K1 L7 m, V, Z
// 遍历每个区块的txs列表和uncle列表,计算hash后判断是否是当前fetcher请求的body
for i := 0; i ) L& b; W* [/ q z9 y# k
}+ i' C+ v! @" `
7 i, J+ d( J3 s, t! h2 o( j' \/ W% J
至此,fetcher获取完整区块的流程讲完了,fetcher模块中80%的代码也都贴出来了,还有2个值得看看的函数:$ N3 _- s3 {& p( n* {$ u
1. `forgetHash(hash common.Hash)`:用于清空指定hash指的记/状态录信息。
2. `forgetBlock(hash common.Hash)`:用于从队列中移除一个区块。1 ^5 b# Y$ m6 g$ K& z
最后了,再回到开始看看fetcher模块和新区块的传播流程,有没有豁然开朗。. \+ G( m- K1 d o: l0 U$ Z
成为第一个吐槽的人