Hi 游客

更多精彩,请登录!

比特池塘 区块链前沿 正文

一文读懂比特币Schnorr签名

落日余晖97
124 0 0
公私密钥对是加密货币安全性的基石,从安全的网页浏览到加密货币金融业务。公私密钥对是不对称的,这意味着给定一串数字(私钥),可以导出另一串(公钥)。但是,反之就不可行。正是这种不对称性允许人们公开分享公钥,公开也能确信没有人可以推导出私钥(私钥需要秘密且安全地保管)。. B) ]. W% Q' [- q$ y  x
非对称密钥对主要用于两种应用:7 ~/ F4 W% x3 J5 w( s: \  d2 K8 X
· 在身份验证中,你需要证明自己掌握私钥;. A: c5 j' _: C7 j- h
· 在加密过程中,信息可以编码,只有拥有私钥的人才能解密和阅读消息。
2 x9 }6 W( y) ?在本篇数字签名的介绍中,我们将讨论一类特定的钥匙:从椭圆曲线派生的钥匙,还有其他非对称方案,其中最重要的是基于素数乘积的方案,包括RSA密钥[1]。) w0 l; y. T5 V5 B7 V
我们假设你了解椭圆曲线加密(Elliptic Curve Cryptography)的基础知识,如果不了解的话没关系可以到原文的前一章节了解。
# f# R. s& ^7 x·进入正题
, Z) C/ x- s" y, t这是对数字签名的交互式介绍,使用Rust代码来演示本文提及的一些想法,因此你可以看到它们是如何运作的,本文介绍的代码使用的是libsecp256k-rs子库。$ m" Y4 H, k7 A! [; ]6 z
这个名字有点拗口,但secp256k1是椭圆曲线的名称,它用于保护很多加密货币交易,包括比特币。
& q9 F% f" B. ?: d! o这个特殊的库提供了一些很不错的功能,我们重写了加法和乘法运算符,以便Rust代码看起来更像数学公式,这使我们更容易试验想要实施的想法。7 Y* J/ B: u( f
友情提示!不要在编写代码过程中使用此库,它没有经过验证,如果需要的话可以用这个子库替代。
6 x1 y8 {$ t. x) [3 V·Schnorr签名的基础知识; {) k0 G# p1 E' D  e  A( Z' B
·公钥和私钥
( R! E+ V4 |" c& F- v* j' K9 F& T我们要做的第一件事是从椭圆曲线创建公钥和私钥。  |+ @" u7 N( r
在secp256k1中,私钥只是0到2256之间的标量整数值,数量之多相当于整个宇宙的原子数,所以有无穷无尽的可能性。. t  ?; o* J: \8 U- ]$ C7 I
secp256k1曲线上有一个特殊点,名为G,它充当“原点”。公钥是通过将曲线上的G加到自身,乘以“Ka”,这是标量乘法的定义,写成:/ Y* \# t" M3 ?$ L- ]7 C
Pa=KaG
) _5 q" H. _. D) m- r1 o举个例子,当以未压缩格式编写时,1的公钥是0479BE667 ... C47D08FFB10D4B8,以下代码演示了这一点:
4 r/ p6 m- }7 d$ Z8 n% o
+ Q! u5 p  C% i·创建签名
, B: z% N. I& g8 B采用方式
0 p' L  N1 Q1 _, Z; {# ]当为标量使用正确选择的随机值时,反转ECC数学乘法(即除法)几乎是不可行的([5],[6])。这个属性称为离散日志问题(Discrete Log Problem),作为许多加密货币和数字签名背后的原理使用。有效的数字签名是证明签名提供人知悉与消息相关联的公钥/私钥的证据,或者已解决离散日志问题的证据。( c5 E1 r  Y: b5 l. Y+ D
创建签名的方法始终遵循以下方法: 1. 生成秘密一次性数字r(称为随机数)。 2. 从r创建公钥R,其中(R=rG)。 3. 将以下内容发送给你的收件人Bob——你的消息(m),R和你的公钥(P=kG)。
+ ^8 b) v  G, ^通过哈希上述所有公共信息的组合来创建实际签名以创建问题,e:
! c* b3 H% `7 @3 E$ m) v5 pe=H(R||P||m)
* ^+ W( N2 U  Z5 [$ L: z选择哈希函数,使e与私钥具有相同的范围,在我们的例子中,我们想要返回的信息是256位数字,所以SHA256是个不错的选择。
9 X# L3 u% L0 B- q1 _* `8 a; q现在使用你的私人信息构建签名:s=r+ke
6 _+ t3 }8 I  y0 `: CBob现在也可以计算e,因为他已经知道m、R、P,但是他不知道你的私钥或随机数。* y( I8 ?- g9 T7 z9 P5 t( E  N
注意:创建这样的签名被称为Schnorr签名,我们稍后会继续讨论,还有其他创建s的方法,比如在比特币中使用的ECDSA [2]。1 w6 i4 Q7 A+ d9 c% e5 `: {+ |
看这个例子:sG=(r+ke)G
+ \" a5 ^2 O# a5 p( {& y将右侧相乘:sG=rG+(kG)e
& C3 J2 D- }6 w' X! ?2 W+ q替代R=rG和P=kG,可以得到:sG=R+Pe( ]2 }& Z8 ^; `8 G6 l# o. i
所以Bob必须计算对应于签名(s.G)的公钥,并检查它是否与等式(R+Pe)右侧相等,这些消息对于Bob来说都已知。
4 p& f  b8 a0 P' @1 n$ {2 |6 U  L
·随机数Nonce的必要性,为什么标准签名中需要随机数?
: e. l0 N% L) q假设我们仅仅只是签署了一条消息m:# R7 @' _* s6 }7 f% G* u: i3 K5 Q9 `
e=H(P||m)$ Q- M, O- r. M! q2 s' x! M
签名为s=ek
* H) y6 A1 }4 s- X# k我们可以照常检验签名是否有效?: h  x5 j7 W. T
目前为止都正常,但是现在任何人都可以阅读你的私钥,因为s是标量,所以k=s/e并不难,至于随机数,必须求解k=(s-r)/e,但r是未知的,所以只要r是随机选择的,这就不是一个可行的计算。
3 x- p2 M/ l% L+ h) Y我们可以证明,没有随机数确实是非常不安全的:7 K! |# r$ D6 l3 i+ S
$ e1 r! x3 }+ N) l% Z. B
·ECDH是什么?
' q# F) I4 [; ^# }, h想要实现安全通信的各方要如何生成用于加密消息的共享密钥?一种方法称为椭圆曲线Diffie-Hellmam交换(Elliptic Curve Diffie-Hellmam exchange),这是一种简单的方法。
2 W; D# |  N% |% A; x* z0 UECDH用于许多地方,包括通道协商期间的闪电网络[3]。  q; a' z# }- Q6 J$ ^9 P
这是它的工作原理,Alice和Bob想要安全地沟通,一种简单的方法是使用彼此的公钥并进行计算:. R8 j& _( m8 K) G
3 f7 A+ f3 O( b- T, ~
出于安全原因,通常会为每个会话随机选择私钥(这涉及到“临时密钥”这一术语的使用),但是我们遇到的问题是不确定对方是否与他们声称的身份相符(可能是中间人攻击[4])。
& a0 m; O5 E; i0 U$ N9 S6 i可以采用其他身份验证步骤来解决此问题,这里不再详述。" n7 D: I' p( c3 G4 h) j

3 _) q  X! s: c3 ^·Schnorr签名
, n5 j1 X; r0 w7 T7 A/ }# c- F9 D如果你经常关注加密货币新闻,就会知道比特币Schnorr签名是多热门的话题。
. x) K7 d" t/ q/ N但实际上,这已经算是旧闻了,Schnorr签名被当作是随机预言模型中最简单的安全数字签名方案,它很有效并且生成短签名,获得美国专利4995082,该专利于2008年2月到期[7]。
' @( m3 p  a; v
8 c8 m1 @' }: B# E( E7 U·为什么Schnorr签名能引起关注?
' u/ R0 P- g$ N! NSchnorr签名如此迷人而危险的原因在于简洁性。 Schnorr签名是线性的,因此具有一些优良属性。
3 j( [( s" }: ?" x- u1 a5 t8 A& `椭圆曲线具有乘法性质,因此,如果有两个对应点X,Y和相应的标量x,y,则:
6 T7 d- c3 h+ E8 F- q4 P  [* @* w(x+y)G=xG+yG=X+Y2 v0 L& f5 N; L- ^( X9 N7 a+ W7 F- M
Schnorr签名的形式为s=r+ek,这种结构也是线性的,因此它非常适合椭圆曲线数学的线性。* w& b: b) Y& ~% W
在上一节中已经介绍了线性,当我们验证签名时,Schnorr签名的线性使其非常具有吸引力,其中包括: 1. 签名聚合; 2. 原子交换; 3.“无脚本”脚本9 n  e5 u5 Q8 b$ K/ E( d) u
% F* c- M& V( q0 X2 H
·Na?ve签名聚合
5 q2 M! v  N" W' e让我们看看,Schnorr签名的线性属性如何用于构造多重签名。5 Q( H, O  `2 S2 W) Q2 j
Alice和Bob想要签署一些东西(比如Tari交易)而不必相互信任,也就是说,他们需要证明其各自密钥的所有权,并且只有在Alice和Bob都提供其签名部分时,聚合签名才有效。
6 q, a4 o. ]  n& P# @3 P假设私钥表示为ki,公钥表示为Pi。 如果我们要求Alice和Bob各自提供一个随机数,可以尝试:& d4 M5 N% q* q, I$ \& T  P; E
所以Alice和Bob可以自己提供R,任何人都可以从R的总和公钥中构建两个两个签名,这的确可行:
. c* H3 \5 a, T% F; ^: i( Y& v! y, ^  G* b
但是这个框架并不安全!
& f. H3 N" j. z  S' H6 a( H$ J1 y/ T" n
·密钥消除攻击
+ h7 f% h! c' k3 u9 F) J依旧是上述场景,但这一次,在Alice公布以后,Bob提前知道了Alice的公钥和随机数。6 d; }  V5 v  x3 j* h1 ^
现在Bob说谎并说他的公钥是P'b=Pb-Pa,公共随机数是R'b=Rb-Ra。+ J$ G9 ?$ e" Z0 |' S7 \. K( q
Bob并不知道伪造值的私钥,但是也没多大影响。6 q# i5 }/ @# ]# U+ ?) K
根据聚合方案,每个人都假设Sagg=Ra+R'b+e(Pa+P'b)。
0 r3 Y$ v: S# |/ |5 E但Bob可以自己创建这个签名:6 N* m( n" h1 t, v" I( }

8 [8 V- l, |" M3 U: j7 m% L
3 u- Y2 `$ B% ~- h3 p5 Z·更好的聚合方法
0 T' i$ ?/ `, F& H在密钥取消攻击中,Bob不知道发布的R和P值的私钥,我们可以要求他签署一则消息证明他确实知道私钥,让Bob攻击失败。, R( c! n/ n. K8 _. `
这是有效的,但它需要在各方之间进行另一轮消息传递,这不利于良好的用户体验。
1 P2 A8 P2 L* @/ V+ `! ^# Z6 Y- C更好的方法是包含以下一个或多个功能的方法: · 它只需证明在普通的公钥模型中是安全的,而不必证实和密钥有关消息,因为我们可以要求Bob在na?ve模式中证明。 · 它应该满足常规的Schnorr方程,即可以用R+eX形式的表达式验证得到的签名。 · 它允许交互式聚合签名(IAS),签名者需要配合。 · 它允许非交互式聚合签名(NAS),其中聚合可以由任何人完成。 · 它允许每个签名者签署相同的消息,m。 · 它允许每个签名者签署自己的消息,mi。
, y3 T( h5 o, p' p* m. @
1 F- \3 P2 D& @4 I+ \1 m9 A·多重签名2 _: t; K1 E( F
多重签名是最近提出的([8],[9])简单签名聚合方案,它满足前一节中的所有属性。
* Q( {7 L* e: l( e# }·多重签名演示. F& O  n6 J* O) M
我们将在这里演示交互式多重签名方案,每个签名者签署相同的消息,该计划的工作原理如下: 1. 如前所述,每个签名者都有一个公私密钥对。 2. 每个签名者都对他们的公共随机数共享一个承诺(在本演示中跳过此步骤),此步骤对防止某些类型的恶意密钥攻击是必要的[10]。 3. 每个签名者都发布他们的随机数,Ri的公钥。 4. 每个人都计算相同的“共享公钥”,X如下:8 p; }/ D2 `$ p# G. \: z! i
请注意,在上述公钥排序中,应遵循某些既定规则,例如按字典顺序序列化密钥。 1. 每个人也计算共享的随机数,R=∑Ri。 2. 问题,e是H(R||X||m)。 3. 每位签名者都需要对签名提供贡献:
) ~1 C& m8 Y7 g) X注意,标准Schnorr签名的唯一出发点是包含因子ai。
4 |: |% C% x8 G4 T3 F% a4 c0 t8 S* {聚合总签名一般是总和,s=∑si。
( o7 x) K7 w3 l7 G! |+ H8 Z8 Y通过以下方式确认验证:sG=R+eX) _* X& ]8 X' r
证明:
) c' k1 a* T5 w, M" K- D让我们用三重签名来演示:
$ I, I; U- `* Q, |. t  T" P8 p/ T. Z$ p: ?: D0 C+ Z+ H3 O) Z
9 l" n2 n. p) S2 k
·安全演示
1 q( \4 ]5 P# f作为最后的演示,让我们展示一下多重签名如何从na?ve签名方案中抵御消除攻击。与密钥消除攻击部分想法相同,Bob在他的随机数和公钥中提供了假值:
5 K/ Q; R, D5 b6 e- H$ e% A! q% N7 c这导致Alice和Bob共同进行了以下计算:) X9 H' V9 i+ Q5 l
Bob随后在多重签名后构建单边签名:
6 |; z: U  P) ^) R( M7 K& k* m我们现在假设ks不需要成为Bob的私钥,但是他可以使用他已知的信息来推导,要使其成为有效签名,必须验证R+eX,因此:
* v  `0 v0 a) c+ x在之前的攻击中,Bob从类似计算中获得了所需的所有算式右侧信息,在多重签名中,Bob必须以某种方式知道Alice的私钥和伪造的私钥(这些条款不再取消)才能创建单边签名,因此他的消除攻击失败。; g3 a% V/ p& X

& i) L! ]6 Z2 u: V·重放攻击
' u+ K, h9 o5 @# N每个签名仪式都要选择一个新的随机数,这一点至关重要,最好的方法是使用加密安全(伪)随机数生成器(CSPRNG)。/ o. ~% O3 Q4 ?6 w; ]4 t% h
但即使是这种情况,攻击者可以通过将签名仪式“倒带”到产生部分签名的时间点来诱骗我们签署新消息,此时,攻击者提供了一个不同的消息,e'=H(...||m')来进行签名,而不会引起任何怀疑,每一方会再次计算他们的部分签名:" J- |5 |5 D, N! \( t
攻击者仍然可以访问第一组签名,只需要简单地做减法:6 U8 F5 h) |( V3 t
最终等式右侧的所有消息都被攻击者获取,因此他可以轻易地提取每个人的私钥,这种攻击很难防御。一种方法是增加终止和重启签名仪式的难度,如果多重签名仪式被中断,那么需要再次从第一步开始,这相当符合人体工程学,在出现更强大的解决方案之前,它可能是目前最好的解决方案!
BitMere.com 比特池塘系信息发布平台,比特池塘仅提供信息存储空间服务。
声明:该文观点仅代表作者本人,本文不代表比特池塘立场,且不构成建议,请谨慎对待。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

成为第一个吐槽的人

落日余晖97 初中生
  • 粉丝

    0

  • 关注

    0

  • 主题

    22