Hi 游客

更多精彩,请登录!

比特池塘 区块链技术 正文

zk- ASM可能代表Web2和Web3的现实汇合点

iPadPro2023
176 0 0
: U4 o/ ?7 c' ~  T  A& K
简介2 L4 U# c; t6 i, z+ b

9 a% t3 @( E& _/ F1 b3 L零知识证明,特别是zk-SNARK(Succinct Non-interactive Arguments of Knowledge)可能是Web 3前沿最重要的技术之一。虽然该子领域的大多数媒体和投资的关注都集中在zk- Rollup上,这种扩展解决方案为以太坊等L1区块链提供了巨大的可扩展性,但这绝不是zk-SNARK的唯一应用。在这篇文章中,我们将深入分析零知识汇编代码(或zkASM)的概念,评估它在zk- Rollup和其他领域的用例,探索它在重新发明我们所知道的互联网方面的理论可能性。
1 l  Y, L) Y% u; M
$ a& q% o3 J" `  @技术原理
! w9 s+ S$ z0 m/ z2 K: L) B
) s) a( d' V7 d$ tzk-ASM,顾名思义,主要包含两个技术部分:zk和ASM。zk部分指的是zk-SNARK,而ASM部分指的是汇编代码。要理解zk-ASM的潜力,我们必须首先理解这两个看似神秘的概念的理论基础。
9 ]( Z0 e7 d! B" g, E* e8 }; F9 H$ h0 G( S
zk-SNARK( u/ q* c( v7 }  X9 U+ ?  \
/ R& W/ [- c/ G8 z7 }4 v5 o
zk-SNARK是zk-Proof皇冠上的宝石:它们是一种简洁的证明,证明某个陈述是正确的,在证明时没有透露任何关于被证明数据的信息。例如,假设某人断言“我知道一个m使得C(m) = 0”,其中m是一个千兆字节长的消息,C是一个函数。zk-SNARK将是一个非常简短的证明(
4 x- k4 [! k6 a: A0 X- W# D0 y9 c4 g/ o4 d4 @4 }( y* @
那么C(m)到底是什么?它有什么用?这个函数实际上是一个算数电路,或者是我们想要执行的特定函数的有向无环图(DAG)表示,如图所示。“m”本质上是进入电路的输入数据,电路中的特定“节点”是单独的逻辑门或算数运算。例如,“+”节点可能有“2”和“3”作为输入,并将“5”输出到下一个运算符。因此,可以在“算数电路”中对任意算数或逻辑运算进行编码。
& X4 H  y- Q5 f" [2 j0 l/ s! I; r
1671517939799069.jpg
8 ?. y$ [: B, J9 |  l8 B1 D: O5 y- X
算数电路的例子。资料来源:https ://cs251.stanford.edu/lectures/lecture14.pdf
( B9 \( j: N( T) N7 r+ `
/ A" C' X3 U( u" ^' H一旦我们有了这个算数电路作为我们想要运行zk-SNARK的代码的表示,我们就可以开始构建这个zk-SNARK了。从根本上说,因为“代数基本定理”,使得zk-SNARK是可能的,该定理指出,一个“d”次多项式最多有“d”个根。数学技巧分为两个步骤:(1)以某种方式将我们想要证明的函数“f(m)”转换为一个多项式(并坚持下去),(2)使用“代数基本定理”与多项式相互作用,并提供一个简洁的证明。在技术术语中,第一部分被称为“Polynomial Committment Scheme”(PCS:多项式承诺方案),第二部分被称为“Polynomial Interactive Oracle Proof”(PIOP)。2 Q+ v, C9 `3 s9 O/ u

6 _6 Z: f+ o: A7 t" Y 1671517939799983.jpg 4 O, L: ~6 G) }& x; O

" J( F) d: @) r0 g: q3 j* ]通用电路的有效 SNARK 的组成部分。资料来源:https ://cs251.stanford.edu/lectures/lecture15.pdf
7 L# y; x8 Q/ y* Y
; h4 `2 P. A  Y& `2 \" y- J2 q; j虽然PCS和PIOP的具体实现超出了本文的范围,但到目前为止,我们已经获得了zk-SNARK核心步骤的粗略草图:" L  Q# l. J8 c' c7 |. ^' b/ Y
. q4 O4 f) B2 d9 m& i4 k/ s$ Q
想运行zk-SNARK,就需要有一个函数的选择(代码函数,数学方程等);将此函数编码为算数电路C(m);运行PCS得到该算数电路的多项式表示;运行PIOP以获得原始“m”大小的对数的简洁证明。我们有一个定制的zk-SNARK可以证明某人知道某个信息而不用透露信息是什么。2 B1 o6 w0 F, |* A9 |: ~% b

. c& P( K$ |6 s9 L汇编代码! [2 S+ I( t$ ^  S/ ~
( g9 h/ _- ^" \' r
zk-ASM的第二个难题是汇编代码的思想。汇编代码是一种包含非常低级语言指令的类语言,机器很容易阅读,但人类很难破译。与Python、Java等高级语言不同,汇编语言包含非常原始的函数,例如会在处理器和硬编码内存位置上的一系列数据寄存器上移动、比较、添加和跳转。例如,在屏幕上打印数字1到9的Python代码为123456789:( t8 w  Z# m% l6 k+ |1 w: E$ N
& `) \8 M, [/ V) d
1671517939799185.jpg
" K, {$ H* I1 a' a+ o
3 d. ^& I+ h2 K; y# Z# v3 N6 q下面是它的x86汇编版本:; _2 J# P8 g4 c6 T

4 |! k4 G3 `' j/ V0 U1 C* v 1671517939811101.jpg 2 e- @. P7 Q* ]7 q

4 K% a' o* L/ V; b+ X- G对这么简单的操作来说,其实变得更麻烦了。那么为什么还要使用汇编语言呢?如上所述,虽然这些指令对人类来说可能不容易阅读,但它们很容易“组装”到110011001字节码中,供机器读取和执行(这称为汇编程序)。相对而言,Python和Java等高级语言更易于阅读,但用这些语言编写的程序不能直接由处理器执行。相反,我们需要依赖于一个“编译器”,它咀嚼我们编写的Python或Java代码,并吐出一堆汇编代码,然后由机器组装和执行。我们可以期望同一段Python或Java在不同的处理器和不同的操作系统上平稳运行,因为编译器完成了繁重的工作,将源代码编译为特定于该处理器或操作系统的汇编语言。0 }* W; P; u7 n& D/ h

/ q" z$ R0 `( {( N: P; B4 q$ |因为所有语言都可以编译成汇编代码(汇编代码本身可以编译成可执行的二进制代码),所以汇编程序本质上就像“所有语言之母”。现在假设我们能够将汇编语言(如x86或RISC-V)中的所有操作数转换为一种算数电路表示,这样我们就能够提供这种汇编语言中所有操作数的zk-SNARK证明。这意味着理论上我们能够提供任何用任意高级语言(如Python或Java)编写的程序的zk-SNARK,这些程序可以编译成汇编语言。这就是为什么我们需要考虑zk-ASM。
; ?- N0 A4 L" o4 O  V1 }5 W/ z3 h. J. d. f# E& g
实际应用
) k/ x3 h* h" |1 \! B% H- i
$ X7 e# t% t0 k% I7 t! c( Qzk-EVM Rollup:Polygon zk-ASM
" j/ |% J2 Y+ |/ z2 n
' G! K2 M9 y/ e+ V3 ezk-ASM最重要的应用之一是创建与以太坊虚拟机兼容的zk- Rollup,或zk- EVM。zk-EVM对于区块链的可扩展性非常重要,因为它允许程序员部署在基于zk-Rollup的L2链上,而无需修改太多(如果有的话)他们的代码]。在这个领域,Polygon的zk-EVM是一个典型的案例研究,它展示了如何使用zk-ASM来实现这一目标。
6 Q% f0 f- u3 ], q7 D' o8 M! D- Z
* x$ P  Y* o/ M5 ? 1671517940016513.jpg
0 M7 R( E0 h6 e. M
1 }- F) r) A8 pEVM 和 Polygon zk-EVM 技术栈的比较。来源:Original Content& d1 A6 I, L2 w. C; \# V
, Z8 ]- M! O9 k
当程序员在以太坊L1区块链上开发时,他们通常使用Solidity进行编码。这种Solidity代码在执行前会被编译成一系列EVM操作码,如ADD、SLOAD和EQ。默认情况下,这个过程显然不会创建任何类型的zk-Proof。Polygon的诀窍是创建一个方法,将每个EVM操作码解释为它们自定义编写的zk-ASM,这对zk-SNARK非常友好。然后,他们的L2 zk-EVM将执行zk-ASM,同时还创建ASM的zk-SNARK电路,以创建zk-SNARK证明。例如,EVM中的ADD操作码将被翻译成Polygon的zk-ASM,如下图:2 ]0 N4 E% d" r

1 d: F" b( [+ c+ _9 `. F 1671517939810425.jpg
7 n; A" d4 V$ F, J0 h6 C5 Y, N1 K' K# Q
EVM ADD 操作码的 Polygon zk-ASM 解释示例。资料来源:https ://wiki.polygon.technology/docs/zkEVM/zkASM/some-examples
, ]9 T+ @& P& c$ \8 U: m
0 q3 O! L: z  A! D) L因为Polygon zk-EVM的招数在汇编级别上,它从普通以太坊程序员接触的代码中删除了两个级别,即“Solidity”级别。这就是为什么大多数开发人员可以将他们为以太坊主网构建的EVM代码直接移植到Polygon zk-EVM的原因。此外,由于Polygon zk-EVM将以太坊的技术堆栈“保持”到操作码级别,所有依赖于分析编译的操作码的调试基础设施都将保持可用和完整。这与其他一些zk-EVM设计不同,例如zkSync,后者不提供操作码级别的zk-Proof。因此,即使Polygon发明并证明了自己的汇编语言,Vitalik写道:“它仍然可以验证EVM代码,它只是使用了一些不同的内部逻辑来完成它。”
. m9 e" \, r; l4 X' U- ]; Z! c- n0 K9 c
超越Rollup:zk-WASM( A: K( @7 h, j& `1 U+ Z1 y+ b4 U
/ |0 z) B% I& C- w' d
zk- EVM绝不是zk-ASM的唯一应用程序。回想一下我们之前的断言,汇编语言本质上是“所有语言之母”,并且 zk-ASM 的创建将为用任何编译成该汇编语言的语言编写的通用程序解锁 zk-Proof。Web Assembly,或称WASM,是最重要的新兴汇编语言之一。WASM于2018年首次发布,其目的是创建一种汇编语言,以提高Web应用程序的执行速度,并为Javascript (Web背后的主要编码语言)提供执行补充。
! d/ a0 x  d/ A* c3 _) N2 g& W0 w6 z; {* M. T# O
从本质上讲,随着Web多年来的发展,Web应用程序的规模和复杂性不断增长,这意味着浏览器编译用 Javascript 编写的所有内容的速度通常非常慢,并且必须依赖复杂的编译-优化-重新加载周期。另一方面,WebAssembly通过提供可移植的、模块化的、易于执行的汇编语言,消除了对复杂浏览器执行引擎的依赖。此外,作为一种汇编语言,WASM允许程序员直接用C语言、C++、Rust、Java或Ruby编写在浏览器中本机运行的代码片段。因此WASM已成为“提供分布式无服务器功能”的首选技术。7 t0 K# `/ h' C* ]! o1 X
, Z* _2 I; Z4 ?
那么zk-SNARK为什么会出现,又是如何出现的呢?WASM的独特之处在于它是一种客户端技术,能够直接与用户输入和数据交互。因为这通常包括敏感数据,如密码和个人信息,我们需要一种技术:(1)确保程序正确执行,(2)我们的敏感信息不会被泄露。如上所述,zk-SNARK是解决这两个问题的完美解决方案,因此是确保WASM安全的重要拼图。. P+ j" b9 Y6 y7 h+ Z3 f2 {

; c1 R2 d; i4 M虽然开发zk-WASM的工作仍处于早期阶段,但最近已经有一些项目发布了用于WebAssembly的zk-SNARK电路原型。例如,Delphinus Lab 的“ZAWA”zk-SNARK Emulator 提出了一种将 WASM 虚拟机的操作数和语义编码到算数电路中的方法,从而使其能够进行 zk-SNARK 证明。随着时间的推移,zk-WASM电路无疑会不断优化,从而允许用通用语言(如C语言、C++、Rust和Ruby)编写的程序采用zk-Proof的范例。
* W6 H2 G3 U& s/ p3 u5 R: ?# C0 P$ x  `
结论/ n: S% U! Y/ [- e) Q, I

/ n& ~" }. L* A在这篇文章中,我们探索了zk-ASM的理论基础,并研究了zk-ASM的两个范例:Polygon使用zk-ASM创建一个操作码级别的zk-EVM,以及zk-SNARK在WebAssembly上的应用以创建zk-WASM。最终,zk-ASM的承诺是将Web 2的互操作性和规模与Web 3的可靠性和安全性结合在一起。
* M  h7 R3 L8 \& n& {' ~' Z' @. @% Y* @7 m) a
一方面,区块链越来越多地寻求超越当前吞吐量瓶颈的扩展,并有可能支持执行,而另一方面,Web 2方法因未能充分保护用户数据和隐私而越来越受到攻击。由于程序员能够在他们的Web 2代码中使用Web 3设计范例,并在区块链上引入Web 2语言和代码,通用的zk- ASM可能代表Web 2和Web 3世界中的一个汇合点。正是在这个意义上,zk-ASM可以让我们重新想象一个安全、无需信任的互联网。
4 Y' ?2 E- `2 g
BitMere.com 比特池塘系信息发布平台,比特池塘仅提供信息存储空间服务。
声明:该文观点仅代表作者本人,本文不代表比特池塘立场,且不构成建议,请谨慎对待。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

成为第一个吐槽的人

iPadPro2023 小学生
  • 粉丝

    0

  • 关注

    0

  • 主题

    3