Hi 游客

更多精彩,请登录!

比特池塘 区块链技术 正文

零知识证明技术STARKs的多项式证明

青丝暮雪780
114 0 0
相信很多人都听过ZK-SNARKS,一个通用而简洁的零知识证明技术,从可验证计算到需要隐私保护的加密货币,它可以被应用于各类场景。不过,可能你还不知道现在ZK-SNARKs有了一个新兄弟:ZK-STARKs.这里的T表示“transparent”,“透明的”,ZK-STARKs解决了ZK-SNARKs的一个主要的缺点,即ZK-SNARKs依赖于“可信启动(trustedsetup)”。ZK-STARKs也带来了更加简单的密码学假设,避免了使用椭圆曲线,配对和指数知识的假设(theknowledge-of-exponentassumption),并且完全地基于哈希和信息论。这也意味着,即使是面对使用量子计算机的攻击者,它仍然是安全的。当然,这也是有代价的:一个证明的大小将从288字节(b)上升到几百千字节(kb)。尽管在某些情况下,这些代价可能并不十分划得来,不过在另一些场景下,尤其对于需要高度的信任最小化的区块链应用,它可能是物有所值。而一旦椭圆曲线被破解,或者量子计算机真的到来的话,那么它必然是非常值得的。那么,这种新的零知识证明到底是如何工作的呢?在这之前,先让我们来回顾一下,简洁通用的零知识证明做的是什么事情。假设你现在有一个(公开,public)函数f,一个(私有,private)输入x,和一个(公开,public)输入y。在不透露x是什么的情况下,你想要证明你知道有一个x能够使得f(x)=y(译者注:比如有一个保险箱,你要在不透漏密码具体是什么的情况下,证明你确实知道这个保险箱的密码)。此外,为了这个证明具有一定的简洁性,相比于通过计算f本身,你希望它能够通过一种更快的方式进行验证。0 N& l2 y$ k) `0 ]/ B( U

) a% W. a) C3 J" b4 J! h0 L. F& C    让我们来讨论几个案例:6 ~& d' \$ Q2 _! ?/ [# j

. M! R- i' @: D+ o* \; n    f是一个计算,它需要在一台普通计算机上运行两周,但是一个数据中心只需要两小时即可完成。你可以把计算任务(也就是运行f的代码)发送给数据中心,数据中心执行计算,然后返回答案,也就是y证明。在几毫秒之内你就可以完成验证,并且可以确信y就是真实的答案。
8 T) ^. C- c5 y6 G
9 K2 n( P8 D% O    你有一笔经过加密的交易,形式为“X1是我旧的余额。X2是你旧的余额。X3是我新的余额。X4是你新的余额”。你想要构建一个证明,证明这笔交易是有效的(具体来说,证明旧的和新的余额都是非负的,并且我的余额减少量刚好是你的余额增加量)。x可能是一对加密密钥,f可能是一个函数,这个函数包含了一个内置公开输入的交易,输入密钥,解密交易,执行检查,如果通过的话返回1,否则返回0。y必然是1了。
8 t4 E5 u0 I3 w. L
2 r3 q- Q1 l2 {4 _) v- c    你有一个像以太坊一样的区块链,并下载了最新的块。你想要构造一个证明,证明这个块是有效的,并且它是链上最新的块,同时这个链里面的每个块都是有效的。你向一个已知的全节点询问来提供这样一个证明。x是整个(全部?或者是部分)的区块链,f是一个按块处理它的函数,验证有效性并输出上一个块的哈希,而y就是你刚刚下载的块哈希。! F, ^) k& ]' f# n$ G
- t' E# P/ I+ d6 q# A4 x' M
    那么,对于所有这些案例,其困难之处在哪儿呢?事实证明,零知识(也就是隐私)保证是(相对!)容易提供的。有多种方式可以将任何计算转换成一个类似三色图问题的一种,图的三着色与原始问题的解决方案有关,然后在不透露具体方案的情况下,使用一个传统的零知识证明协议,来证明你有一个有效的图色方案。这篇来自MatthewGreen2014年很棒的文章对其中细节做了阐释。更加困难的一件事情是简洁性。直观来讲,简洁地证明计算相关的事情十分困难,因为计算极其脆弱。如果你有一个很长很复杂的计算,并且假设你有一种能够在计算中间将任何一位(bit)从0变为1的能力,那么在很多情况下,即使是仅仅改变其中某一位,也足够使得计算产生一个完全不同的结果。因此,很难看出如何才能通过一些手段判定其正确性,比如随机采样一个计算轨迹,因为非常容易就会错过那“邪恶的一位(oneevilbit)”。不过,通过一些花哨的数学方法,可以证明其实你是可以做到的。一般高层次的直觉是协议可以实现这一点,类似擦除编码中使用的数学,它经常被用于使得数据具有容错性。如果你有一些数据,并且将这些数据编码为一条线,然后你可以从这条线上选出四个点。这四个点中的任意两个都可以重建这条线,因此也会给你另外两个点。进一步地,即使你对这些数据做出极微小的改变,然后保证这四个点的至少三个。你可以将这些数据编码为一个1,000,000次多项式,然后在这个多项式上选出2,000,000个点,任意一个1,000,001个点都会恢复原始数据,继而恢复其他点,原始数据的任何一点偏离都会改变至少1,000,000个点。这里展示的算法,大量通过这个途径利用了多项式来进行错误放大。一个简单的例子假设,你想要证明你有一个多项式P,对于从1到1百万之间的所有x,P(x)是一个整数且0证明这个问题的“传统”方法是,遍历所有的1,000,000点,逐个对值进行校验来进行验证。但是,我们想要知道是否我们能够构造一个证明,它可以在小于1,000,000步的情况下得到验证。简单地随机对P进行求值校验无法做到这一点;总是有可能出现一个恶意证明者,他会想出一个P,这个P满足在999,999位置内的限制,但是不满足最后一个,那么随机采样仅有的几个值,将会总是错过那个正确的值。那么,我们可以做什么呢?3 F9 n; Z' B4 D7 e2 l% A
* p; b+ {0 n- I4 `# S
    -多项式-让我们从数学上对这个问题进行一下转化。让C(x)为一个约束检查多项式(constraintcheckingpolynomial),如果0% t2 m9 n: Z. b6 p, N

. S: v% L; V. M) h5 c' j7 z( u* J    -C(x)-现在,问题变成了:证明你知道P,对于从1到1,000,000的所有x,都有C(P(x))=0。让Z(x)=(x-1)*(x-2)*...(x-1000000)。这是一个已知的数学事实,对于从1到1,000,000的所有x,任何等于零的多项式都是Z(x)的一个乘积。因而,问题可以被再次转化:对于所有的x,证明你知道P和D,满足C(P(x))=Z(x)*D(x)(注意,如果你知道一个合适的C(P(x))),然后除以Z(x)来计算D(x)并不太难;你使用多项式长除法,或基于快速傅里叶变换更具有实际意义更快的算法)。现在,我们已经将原始命题转化为一个看起来数学上更清晰,也更可证的一个问题。那么,要如何证明呢?我们可以把证明过程想象成证明者和验证者之间一个三步的交流过程:( W9 e6 c# B8 F9 w1 x4 D

$ v( J/ H' \3 N, N3 ~- A    证明者发送一些信息" N5 ^& T* ?4 O
9 `7 R. Q0 Y) Y2 ~0 l! a4 b  Q: j
    然后验证者发送一些请求
; N' X1 n  F7 g  e, L
9 @$ A# p* p1 b4 `# c    然后证明者再发送一些信息' C+ [. d* v4 g2 E' n5 C; o5 Q  L, `

; J6 p' N% ?& O) z    首先,证明者提交(也就是,生成一个Merkle树并且将根哈希发送给验证者)对于从1到10亿(是的,10亿)之间的所有x,P(x)和D(x)的值.这包含了1百万个点,(满足)0
  q: m! [/ t: n0 B( t& K$ f+ M# K2 Y3 x8 b3 \
    我们假设验证者已经知道了Z(x)在所有这些点上的值;在这个方案中,Z(x)就像是一个公开验证密钥,每个人都必须提前知道(客户端没有存储Z(x)的空间,因为它整个可能只是简单地存储了Z(x)的Merkle根,并需要证明者同时提供验证者需要查询的每个Z(x)值的分支;又或者,对于某个x,有一些在Z(x)之上非常容易计算的数字)。在获得提交(也就是Merkle根)后,验证者在1和10亿之间随机选择16个x的值,并要求证明者提供这些值上P(x)和D(x)的Merkle分支。证明者提供这些值,验证者检查:
6 }: S8 c6 l) ?. _$ r" h; ]5 H+ a
; a! C( g; p" ?4 A# D    分支与之前提供的Merkle根相匹配# K6 u& Y" ], [' t
8 r5 u8 G3 d. a: l. H( z7 V& E
    C(P(x))在所有16种情况下都等于Z(x)*D(x)+ l0 x4 m) B9 Q+ ^, E& z3 f" h

2 _; x, i" \5 {( F& b, v  T    -想象中的情形-我们知道这个证明改善了完备性—如果你真的知道一个合适的P(x),然后如果你计算D(x)并且正确地构造出证明,那么这16个检查都将顺利通过。但是可靠性怎么样呢?—也就是,如果一个恶意证明者提供了一个坏的P(x),他们被发现的最小概率是多少?我们可以进行如下分析:因为C(P(x))是一个1,000,000次多项式,它的次数至多是10,000,000。通常来说,我们知道两个不同的N次多项式至多相交N个点。因此,对于某个x,一个1,000,000次多项式,一个总是等于Z(x)*D(x)的任意多项式,这两个多项式若不同,那么将会必然在至少990,000,000个点上都不同。故而,即使是只检查一次,一个坏的p(x)被发现的概率已经是99%,再加上有16次检查,被发现的概率会上升到1-10^-32。也就是说,该方案与计算哈希冲突一样难以欺骗。所以,我们刚刚到底分析了些什么?我们使用多项式“增强”了在任何不好的解决方案中的错误,也就是将原始问题糟糕的解决方案,即需要直接执行一百万次检查,变成了一个验证协议的方案,该方案即使进行一次检查,就能够99%地标识出错误。我们可以将这个三步的机制转化为一个非交互式证明,也就是在利用FiatShamirheuristic的基础上,一个证明者可以将它进行广播,然后被所有人进行验证。证明者首先构建一棵P(x)和D(x)值的Merkle树,然后计算树的根哈希。根自身随后被用作是熵的来源,熵决定了证明者需要提供树的哪个分支。证明者然后一起广播Merkle树根和分支作为证明。计算全部在证明者一端完成。从数据中计算Merkle树根,然后用它来挑选要审计的分支,高效地取代了一个交互式验证者的需要。对于一个没有有效P(x)的恶意证明者,他能做的唯一事情是进入尽力不断地构造一个有效证明,直到他们最终足够幸运的话,找到了他们选择计算的Merkle树根分支。不过鉴于可靠性是1–10^-32(也就是,对于一个给定的假证明,至少有1-10^-32的概率无法通过检查),这可能会耗费恶意证明者数十亿年的时间来找到一个可通过检查的证明。
. W1 b* y7 _: Z% t
" q( N9 z* X5 z+ t% G% X5 P    进一步探究为了阐释这个技术的强大之处,让我们来用它做一点不寻常的事情:证明你知道第一百万个斐波那契数。为此,我们会证明你知道一个表示一个计算带的多项式,而P(x)表示第x个斐波那契数。约束检验多项式现在会跨越3个x坐标:C(x1,x2,x3)=x3-x2-x1(注意,对于所有的x,P(x)表示一个斐波那契额序列,如果C(P(x),P(x+1),P(x+2))=0会怎样)。
8 v; v# U" R5 h0 g3 b2 N6 W; P' u  r6 {
    -斐波那契-转换后的问题变成了:验证你知道P和D使得C(P(x),P(x+1),P(x+2))=Z(x)*D(x)。对于证明审计的16中情况中的每一个,证明者需要提供用于P(x),P(x+1),P(x+2)和D(x)的Merkle分支。证明者额外还需要提供Merkle分支来表明P(0)=P(1)=1。否则,整个过程都是一样的。现在,要想在现实中实现它,还需要解决两个问题。第一个问题是,如果想要实际应用于普通数字,这个方案不够高效,因为数字本身非常容易变的极大。比如,第一百万个斐波那契数有208988位。如果我们真的想要在实践中达到简洁的要求,不是在普通数字上计算多项式,而是需要使用有限域(finitefield)—即仍然遵循同样数学规则的数字系统,比如a*(b+c)=(a*b)+(a*c)和(a^2-b^2)=(a-b)*(a+b),但是这个数字系统中的每一个数字都保证只占据常量空间。证明第一百万个斐波那契数将会需要一个更加复杂的设计,这个设计在这个有限域数学之上实现大数算术。最简单最可能的有限域是模块化数学。也就是,对于某个质数N,使用a+bmodN替换每一个a+b。将同时的操作应用与减法和乘法,对于除法,使用modularinverses(比如,如果n=7,那么3+4=0,2+6=1,3*4=5,4/2=2,5/2=6)。你可以在这里(在页面上搜索“primefield”)了解更多关于这类数字系统,在里面我对质数域做了一些介绍。或者从有关模块化数学的维基百科(在文章内直接搜索“finitefields”和“primefields”,可能看起来非常复杂,与抽象代数直接相关,但是不要在意这些)了解更多。第二,你可能已经注意到,在我上面的可靠性证明梗概中,我忽略了一种攻击:不用似然的1,000,000次P(x)和9,000,000次D(x),攻击者提交另一些值,这些值不来源与任何相对低次的多项式?然后,一个无效C(P(x))的参数,必须在至少990百万不适用的点上不同于任何有效C(P(x)),所以也就可能出现更多的这种有效攻击。比如,一个攻击者可以为每一个x生成一个随机值p,然后计算d=C(p)/Z(x),然后提交这些值替换P(x)和D(x)。这些值不会是基于任何一种低次多项式,但是它们会通过测试。事实证明,尽管用到的工具可能相当复杂,但上面这种可能性仍然可以进行有效地防范,现在你可以非常负责任地说,它们确实填补了STARKs中数学创新的空缺。不过,这个解决方法也有一个限制:虽然你可能会剔除与1,000,000次多项式相差甚远(比如,你会需要改变所有值的20%,使它成为一个1,000,000次多项式)的一些数据保证(commimenttodata),但是你无法排除仅在于只有一两个坐标不同的多项式数据。因此,这些工具将提供临近证明(proofofproximity)—证明P和D上的大多数点都与那类多项式相关。因此,尽管有两个“意外情况(catches)”,但是构建一个证明仍然是足够的。首先,验证者需要再多检查一些情况,为其局限性所引入的错误留一些余地。第二,如果我们正在做“边界约束检查(boundaryconstraintchecking)”(比如,证明上面斐波那契案例中的P(0)=P(1)=1),然后,我们需要扩展临近证明,不仅证明大多数点都在同一个多项式上,而且证明这两个(或你想要检查的任何点数)特定点都在这个多项式上。在这个系列的下一部分,我会继续解读临近检查问题的解决方案。
BitMere.com 比特池塘系信息发布平台,比特池塘仅提供信息存储空间服务。
声明:该文观点仅代表作者本人,本文不代表比特池塘立场,且不构成建议,请谨慎对待。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

成为第一个吐槽的人

青丝暮雪780 初中生
  • 粉丝

    0

  • 关注

    2

  • 主题

    11